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Alpha particle losses can affect 
reactor viability

TFTR

D + T → n + α (3.5 MeV)

• Alphas confinement essential for ignition:
τSD≈105 transits in ITER

• Unanticipated loss of energetic alphas may
  damage first wall: few % acceptable for ITER



TFTR DT experiments provide a wealth of 
data on alpha confinement and loss

TFTR

• Reactor-level alpha population:  βα/βtot~0.1

• Set of diagnostics measures confined and
  lost alphas

α-CHERS,  2F7, 9P19 Loss Probe, 9P21
Pellet CX,  2F8 µwave scattering, 9P23
Ωi emission 9P26

Overall Result:

• Alpha loss consistent with classical models and
  confined alpha diagnostics results:  
  >90% confined at high Ip



• Classical α losses

• MHD & collective α losses

• RF wave interactions with fast ions

Outline
TFTR



Lost Alpha Diagnostic

• 4 detectors 

• ρ ≈ 2-12 cm (ρ ≈ 5 cm for alphas)

• χ = arccos(vT/v) = 45°-83° 
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Classical 
Losses

TFTR

Resulting from basic magnetic structure of 
tokamak:

• First orbit

• Stochastic toroidal field ripple diffusion 
(“ripple diffusion”)

• Ripple trapping



DT alpha flux at 90  detector is consistent 
with classical first orbit loss

TFTR

• Loss results from fat
  banana orbits which
  strike wall

• Calculated global first
  orbit loss: ~3% at
  2.5 MA in TFTR

• First orbit loss from
  ITER should be <1%

S. J. Zweben, et al., Nucl. Fusion  35, 893 (1995)
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S. J. Zweben, et al., Nucl. Fusion  35, 893 (1995)

Alpha loss at 20° appears consistent with 
stochastic ripple diffusion 

S. Zweben, et al., to appear in Nucl. Fusion  (1995)
M. Redi, et al., Proc. EPS (1995)

•  TF ripple causes banana
   orbits to diffuse & escape 

•  Ripple diffusion pitch angle
   larger than for first orbit loss

•  TFTR ripple diffusion loss  
   ≈ 10%

•  ITER ripple diffusion loss 
   ≈ 2 – 5%

TFTR

S. Zweben, 2F9
H. Duong, 2F10
M. Redi, 2F11
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Driven by background 
plasma:

• sawteeth
• kinks
• ballooning modes
• tearing modes
• locked modes
• ELMs
• disruptions Janos, 9P24

MHD & Collective 
Losses

TFTR

Driven by fast ions 
(collective):

• fishbones
• TAEs
• BAEs

Magnetic perturbations ⇒ alphas wander out



No alpha loss due to Alfvén modes seen in TFTR
TFTR

• No alpha-driven TAE, even at highest Pfusion
Z. Chang, et al., to appear in Nucl. Fusion.   9P14

• Attempts to destabilize Alfvén modes in DT plasmas:

- reduce Ti ⇒ less ion Landau damping
- increase β ⇒ drive BAEs  W. W. Heidbrink, 9P17
- increase q(0) ⇒ align mode with ∇βα 
- add ICRF tail ions ⇒ increase drive K.-L. Wong, 2F6

• Tail ion loss during ICRF driven TAE caused vessel damage

• ITER has 3× larger R∇βα than TFTR: predicted to be unstable



• Mode identified as kinetic ballooning mode (KBM)

• Seen at high ∇β in D & DT ⇒ pressure driven, not α-driven

Alphas lost during KBMs through passing/banana 
orbit conversion

TFTR

Z. Chang, et al., submitted to Phys. Rev. Lett.     R. White,   2Q22
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RF Wave 
Interactions with 

Fast Ions
TFTR

Wave electric fields accelerate fast ions

• ICRF fast wave

• Ion Bernstein wave

• Lower hybrid wave



• Fusion products interact over wide range of R due to wide
  range of v||

ωRF = Ωf(R) - k||v||f

• Interaction can change E, µ, 
  and Pφ of particles

• Added v⊥ from wave moves
  particle from passing to lost
  banana orbit (as with KBMs)

ICRF waves induce fast ion loss
TFTR
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ICRF fast waves expel small fraction of alphas 

• Added loss on fattest banana orbit; ~ 2% globally

• Requires first orbit loss cone ⇒ ITER losses will be small

TFTR
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Ion Bernstein waves in D3He plasmas expel 
large numbers of fast ions

TFTR

• IBWs created by mode conversion of fast waves R. Majeski, 4IA2

• Vary 3He fraction or BT to move mode conversion layer 

• Loss level depends sensitively on layer location
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Lost fast ions strongly heated by IBW
TFTR

1.0 MeV  T→1.5 MeV  T
or

100 keV  D beam ion→
 2 MeV  D

If T:  DE~  2 MeV2/sec 
If D:  DE~25 MeV2/sec 

Fisch & Rax, Phys. Rev. Lett. 69, 612 (1992) J. Rax, 3Q22

4 5 6 7 8 9 10
0

5

10

F
as

t I
on

 L
os

s 
R

at
e 

(a
.u

.)

Gyroradius Centroid (cm)

IBW Loss 
(scaled) 

First Orbit Loss of
Birth-Energy 
Fusion Products

Increasing Energy

θ=90°

δE

• Alpha energy channeling: wave extracts energy from alphas 
  for ion heating or current drive 

• Observed DE is large enough to permit alpha channeling



Numerical model predicts features of loss
TFTR
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 with IBW in blue
 zone, particle is
 given “kick” in E &
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 wave physics

•Orbits followed at
 each step

•This case: 1 MeV T
  heated to 1.5 MeV
  before loss to 90°
  detector

M. Herrmann, 3Q31



Future plans for TFTR alpha loss studies
TFTR

• Image alpha ripple loss heating of wall with IR TV

• Push toward ITER R∇βα ⇒ excite alpha
  instabilities Mansfield, 4IA3; Zarnstorff, 5IA2

 
• Look for cooled fast ions in IBW experiments, as
  predicted by alpha channeling theory  

• Perform IBW experiments directly with alphas: 
  fRF from 43 MHz → 30 MHz



Conclusions
TFTR

• Observed alpha loss in TFTR consistent with
  classical model in MHD quiescent discharges

• Most losses in TFTR require first orbit loss cone,
  should be small in ITER

• However, ITER (20 TF coils) has significant ripple
  diffusion loss cone ⇒ same processes may
  transport alphas there

• IBWs interact strongly with fast ions ⇒
  demonstrates one building block for “alpha
  energy channeling” 


