Near-Neoclassical Transport & Enhanced Stability in Reversed Shear Plasmas in TFTR

M.C. Zarnstorff, S. Batha¹, R. Bell, M. Beer, Z. Chang, P. Efthimion, E. Fredrickson, C. Gimblett², J. Hastie², T. Hender², M. Hughes³, F. Levinton¹, J. Manickam, E. Mazzucato, D. Mikkelsen, S. Paul, M. Phillips³, A. Ramsey, G. Rewoldt, S. Sabbagh⁴, G. Schmidt, S. Scott, E. Synakowski, and the TFTR Group

Princeton Plasma Physics Laboratory
¹Fusion Physics & Technology, Inc.
²Culham Laboratory, UKAEA
³Northrup-Grumman, Inc.
⁴Columbia Univ.

8 November 1995
37th Annual APS/DPP Meeting
Louisville, KY
Motivation

Reversed central magnetic shear configurations are particularly attractive for advanced tokamak reactors

-- predicted improved confinement and stability
-- compatible with bootstrap current profile shape

Mounting experimental confirmation of the advantages of reversed magnetic shear from a number of machines.

Reversed magnetic shear can:
• increase TFTR stability limits
• increase the reactivity of TFTR plasmas
• extend the range of physics studies for
 -- α-physics
 -- transport and stability of burning plasmas
 -- integration of DT and advanced tokamak physics

Outline
• Formation
• Transport
• MHD Stability
• Future Directions
A Wide Range of Reversed Magnetic Shear Configurations Have Been Produced

- Curves from VMEC free-boundary fit to MSE, magnetics data, and kinetic pressure profile
- Have obtained $1.8 \leq q_{\text{min}} \leq 3.3$ so far, $r_{\text{min}}/a \leq 0.5$ during I_{P} flat-top
- Configuration is reliably obtainable, routinely available.
• Plasma is initiated at full size
 -- force current to diffuse maximum distance

• Scenario is robust, reproducible

• q_{min}, r_{min}, and $q(0)$ can be controlled by the prelude NBI timing, co/counter-mix, the I_p ramp-rate and final I_p.

see S. Batha, 2F.02
Core Confinement is Strongly Improved after Transition to ERS

- Observed $p(0)/\langle p \rangle$ range from ~ 6.5 to ~ 8
- L_{pi} ~ ion banana width due to high central q
 \Rightarrow ion orbit squeezing effects
- Calculated bootstrap current ~80% of total I_P
Two Confinement Regimes Observed with Reversed Shear

- Two confinement regimes observed with reversed shear:
 (A) similar to supershots, convection dominated core, low χ_i, χ_e
 (B) sudden transition to reduced particle transport and thermal transport ERS mode (Enhanced Reversed Shear)

- Transition appears to require balanced NBI > 16 MW may have dependence on co/ctr mix of NBI may have dependence on q_{min} or r_{min}
\(\chi_i \ll \chi_i^{\text{neo}} \) may be due to \(L_{\Pi i} \sim \) Banana Width!

Likely indicates that ion orbit squeezing is important!

Improved Neoclassical calculations under development:

- orbit squeezing effects via recent papers by Shaing and Hazeltine; Hinton and Kim

 \(\Rightarrow \) modification of Hirshman-Sigmar equations

- comparison with Full Torus gyrokinetic Neoclassical Simulation (Z. Lin, W. Tang, W. Lee)
The Transition Threshold is Not Just a Function of Power

- All cases have near-balanced injection in high-power phase
- Lower power correlates with later transition perhaps due to lower q_{min}?
- Lowest power transition observed: $P_{\text{NB}} = 16\text{MW}$
Electron Particle Loss is a Small Fraction of the Fueling inside Reversal Surface

- Volume integrated electron continuity equation terms
 Indicates sources inside a flux surface and losses through a flux surface
- Source is dominated by beam fueling inside \(r/a \sim 0.9 \)
 Wall source magnitude is measured by \(H_\alpha \) array
D_e is sharply reduced after transition

\[\Gamma \equiv -D \nabla n \] flux balance "effective" diffusivity

- full neoclassical flux calculation including off-diagonal terms (Houlberg, Shaing, & Hirshman)

- low diffusivity or large pinch?
Ion Energy Loss is a Small Fraction of the Heating Power

Volume integrated radial energy balances.

Energy sources inside a flux surface

Losses through a surface.

Electron heating is dominated by Q_{ei} in the core

Convection

Total Ion Heating

$Ions$

Ion Energy Loss is a Small Fraction of the Heating Power

Q_{ei}

dW_i/dt

r/a

Total Electron Heating

$Electrons$

$Electron$ heating is dominated by Q_{ei} in the core

P_{rad}

$convection$

q_i

q_e

dW_e/dt

R/S region

R/S region
χ_i is Sharply Reduced after Transition to below neoclassical level.

Includes off-diagonal terms

Orbit squeezing effects from Shaing, Hsu, and Hazeltine,
Phys. Plasmas 1, 3365 (94)

see Levinton 9P.05
Core Turbulence Dramatically Reduced in ERS

- change in fluctuation profile appears coincident with transition
- preliminary BES analysis indicates core fluctuations levels are reduced to ≤ 0.2%, substantially less than with monotonic q(r).

ERS

RS

Monotonic high q(0)

TFTR

X-mode Reflectometer

k_θ < 0.5 cm\(^{-1}\)

Fluctuation levels outside regions shown saturate instrument.

see E. Mazzucato 9P.10
Density Sustainment after High Power Phase Confirms Low D_e

- High central density can be maintained with ~5 MW of NBI

- After step down of P_{NB}, density outside r_{min} decays, density peaking rises

- Reverse transition at ~3.1 sec?
Hydrogenic transport is reduced in ERS

- Small Tritium puff in conjunction with neutron collimator measurements is used to study hydrogenic transport.
- Core ion diffusivity is reduced in ERS, but similar outside reversed shear region.
Core Hydrogenic Diffusivity is Significantly Reduced in ERS Plasmas

TFTR

Tritium transport determined from response of 12 channel neutron collimator to a tritium gas puff.

For \(r < 0.6 \text{ m} \), convective velocity consistent with neoclassical theory.

In ERS mode, particle flux in RS region is consistent with neoclassical predictions.
Possible Transition Mechanism: ∇p driven increase of shearing rates and decrease of instability growth rates

1. ExB flow shear stabilization, generated by ∇p (Synakowski, 2F12; Diamond 7Q21)

2. Increase in fraction of trapped particles with favorable drift precession from high $\alpha = -q^2 R\beta/dr$ due to strong Shafranov shift (M. Beer, 4Q08)

3. Peaking of density profile decreases ITG drive (S. Parker, 8IB3 and G. Rewoldt, 9P04)
• Consistent with variation observed via Abel-inverted tangential visible-bremstrahlung array
 -- see A. Ramsey, 9P.38

• Nonlinear gyrofluid simulations indicate that residual fluctuations may drive outward carbon flux that balances neoclassical pinch
 -- see M. Beer, 4Q.08
RS Plasmas are Robustly Stable to High-n Modes in Plasma Core

- Margin against high-n ballooning > factor of 2 at all radii. Robustly stable in core.

- This robust stability region extends to 80% of minor radius in some plasmas.

- Due to profile differences, some ERS plasmas can be near the ballooning limit outside r_{min}.

\[
\sqrt{\frac{(\psi - \psi_0)}{(\psi_a - \psi_0)}} \sim \frac{r}{a} \quad -\text{S. Sabbagh}
\]
Observed Saturated MHD Activity is Benign

• Observed on both RS and ERS plasmas
 No ERS specific MHD activity has been observed.

• May be resistive-kink mode? -- see T. Hender 9P.07

• No tearing-like MHD activity observed in plasma core.
 No sign of neoclassical tearing modes observed with monotonic q(r).

• Off-axis "sawteeth" are observed after the high-power phase, with m/n = 2/1 precursors.
Measured T_e evolution from ECE polychromator
Similar measurements by reflectometer

Disruption occurred with
\[\beta_{N*} = 3.5, \quad \beta_N = 1.7, \quad \beta(0) = 5.4 \% \]

Maximum achieved with ERS:
\[\beta_{N*} = 3.8, \quad \beta_N = 2.0, \quad \text{without disruption} \]

In contrast, for monotonic $q(r)$ and similar pressure profiles, the β_N limit is observed to be ~ 1.3.
• PEST calculates $n=1$ infernal mode becomes unstable at approximate β_N of disruption.

• Resistive stability agrees with ideal calculation at experimental Lundquist number $S \approx 10^9$.

• Resistive calculation indicates weak persistent $n=2$ and $n=1$ modes, observed in experiment.

-- see: T. Hender 9P.07; J. Manickam 9P.08; M. Phillips 9Q.02; M. Hughes 9Q.01
Future Directions

• Optimization and control of MHD stability
 -- Theory predicts increased β_{N^*} limits for increased r_{min}
 -- Need to control q-profile evolution to avoid unstable equilibria at high β
 (e.g. \sim integral q_{min})

• Understand transition and transport in new regime
 -- scaling of transition and transport
 -- control of barrier location
 -- ash transport

• Integrate DT and Advanced Tokamak physics
 -- α heating dynamics and profile modifications
 -- α stability with reversed shear
20 MW of Fusion Power is a Reasonable Goal

- $\beta_N = 2$ calculated stable for all n (PEST) in this regime, and achieved experimentally

- Final n_e profile from equilibrium solution using observed Q (with floor) T_e, T_i and equilibrium evolved using observed χ_e, χ_i (with floor), $Z_{eff}=1.5$

- Temperatures do not come to steady state! $Q(0) > 5$ when $Q(a) \sim 1$

CAUTION: this extrapolation is based on empirical transport coefficients in a new confinement regime, with no scaling information available.
Conclusions

• Reversed magnetic shear configurations can be easily produced and studied in present experiments

• The new ERS regime offers
 -- extremely low core transport and turbulence
 -- new insight into the causes and limits of transport, mechanisms for transport barriers
 -- new possibilities for reactor design:
 Low D_e: pellet or low-energy beam fueling?
 Low χ_i: α-channeling? advanced fuels?

• Reversed magnetic shear configurations have higher stability limits that monotonic q-profiles for similar pressure profiles

• Reversed shear and ERS provide a path for TFTR to explore strong alpha-heating and its interaction with advanced tokamak configurations.