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There are two dominant viewpoints regarding
the cause of low transport in ERS

1. E B shear stabilization of turbulence

2. Shafranov shift gradient (D) stabilization

Both pictures exhibit a threshold
guality

Both predict bifurcations and
sustained high confinement with

increasing Np

On TFTR, both effects are important

« E’ B shearis necessary to keep

confinement high, fluctuations low
With D' effects alone, ERS is lost

« E’" B shear beats out instability drives
only if D' effects are present

e Variability in a shear suppression
threshold criterion is found




Two plasmas nearly identical early in time can
follow very different paths
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Transition yields good core confinement,
strong peaking of density and pressure
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Analysis for barrier physics studies done near
r/a = 0.3, where gradients are large and

well documented



E” B shear, Shafranov shift are candidates
for transition model

|. E” B shear stabilization (Diamond)
= Np/(nZe) + Vi Bq - VB
increasing Np b larger Er and E; shear
Shearing rate:

RBg)?
Oes° ( Bq) ﬂ.ll/ REqu (Hahm and Burrell)

On outer midplane,

Threshold criterion:

Gk s~Qg"@ P no transport (Waltz et al.)
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II. Low J(r) incore b large D

favorable precession of trapped particles

fluxes reduced with Np increase

may lead to a bifurcation on its own

(M. Beer: next talk)

(J. Drake, edge ballooning modes,

PRL)

Both suggest a combined picture:
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Bursting fluctuation levels fall when ExB shearing rate
exceeds maximum linear growth rate

TFTR
ERS 20 MW RS 27 MW
3 |
i ax
<, .|  Transition : o 3 I d:,
7 3l \| '/ | F gE B

L0

ol 0 =03
0] | | Jin - r/la=0.3 //731:(;

1.0 | dn/n dn/n

dn/n [%0]
O
o

| = —
0.0 ! y r/a=0.2-0.3 r/a=0.2-0.3
2.55 2.65 2.75 2.55 2.65 2.75

time [s] time [s]

Reduction In turbulence is at ERS transition time

dn/n measured from reflectometry (Mazzucato, 4F.06;
PRL 77, 3145)



Separation of E, and D' effects aided by
develpment of nearly steady-state ERS
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 Plasma pressure profile nearly
constant in postlude

o Steady-state with half of available
power allows E, variations with co,

counter beams in postlude



Back-transitions are correlated with applied
torque at constant power
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e Strong co-injection leads to loss
of ERS confinement

 nearly balanced had sustained ERS

e toroidal rotation drive of instabilities
expected to be small (Rewoldt,1S.15)



E, was varied during the postlude by

changing Vs with co, counter neutral beams
TFTR
Carbon force balance: E, = Np/(nZe) + VB - VB

Co-dominated 14 MW ERS phase
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Core stored energy collapses when Gt g
IS driven to small values by co-rotation
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« Change in ¢ g precedes back-transition

« Back-transitions at similar values of Gt- g ~ inax

D unchanged until loss in confinement



Core fluctuation levels are correlated

with local transport
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Applying high power early in the current
evolution makes ERS more likely
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« Early P larger g(0), dmip. Shafranov shift,Np



Heating earlier in current evolution
increases Q- g and D', consistent with
lower power threshold

Before transition, time of same global bp
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B field scan reveals strong scaling of power
threshold and variations in E “ B shear
stabilization criterion
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Strongly Unbalanced NBI

Raises Threshold Power
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co-injection Np increases

oppose Vs increases

Transition can be obtained with
Png=16.5 MW and P,/Pyg = 0.7

Counter rotating case more difficult to
explain



Summary

1. Combined transition picture Is consistent
with ERS transition and reduction in
turbulence

2. E B shear is necessary to keep high

confinement
With D' effects alone, ERS is lost

3. D effects required for sustained E” B
shear suppression with increasing Np

4. Challenges
In B scaling experiment, G s/gh2* at

transition varies by factors of two or
more
need to find where the
dependencies are
D' more important at low B?

Power threshold higher with strong
rotation



Transport barriers with naturally occurring
Er shear may not scale favorably to a
tokamak reactor

It may be energetically unfavorable to
generate enough rotation on ITER to create a
barrier.

Scaling of Np drive to ITER-like machines is

unfavorable if profile scale lengths increase
with system size

P smaller machines, like spherical

tokamaks, may be better suited for
transport barrier formation

b IBW may be needed to act as a low-
power trigger mechanism



