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MAIN POINTS

 Solution or significant amelioriation of divertor heat
loading problem

« Challenges leading transport models

P New insights into transport mechanisms




MAIN RESULTS

Used Ar, Kr, and Xe gases to increase radiation in neutral-beam-
heated discharges.

Increased total radiation x 3, P reduced heat load on wall.

Reduced deuterium and carbon influx.

— Confinement improved or unchanged
— Record fusion energy for TFTR

Little or no decrease in T, P Can study thermal transport.

— Consistent with critical-gradient model.
— Near marginal stability.




OUTLINE

Use of high-Z gases to increase radiation

Reduction of heat load and impurity influxes

Response of confinement and Tg

Interpretation of results by TRANSP

T profile consistency in highly-radiative shots

Comparison of results with models




Use oF HicH-Z (GASES
TO INCREASE RADIATION




Feedback-Controlled Injection of Xenon Increases Radiated Power.
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High-Z lons Cool More Efficiently than Low-Z lons.

-17

10

Xenon

COOLING RATE (ergs cm3/sec)

10-21 | Carbon S
] - TFTR -
1022 Ll I Lot I L
0.05 0.1 1 10 20

ELECTRON TEMPERATURE (keV)

e <7> =10, 32, 42 for Ne, Kr, Xe at Ta=6 keV



Local Radiated Power Increased Up To 6 Times
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MIST Code Models Radiated Power Profile

Radiated Power Density (W /cm?3)

° Prad / Pheat =45 - 65 %.
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RepucTioN oF HEAT LOAD AND
IMPURITY INFLUXES




Xenon Puff Suppresses Carbon Influx ("Bloom")
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ReEspPoNSE oF CONFINEMENT AND
ELECTRON TEMPERATURE




Central T, and tg Little Changed at High Radiated Power Fractions

Krypton puffing
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Deuterium Influx Lower with Krypton and Xenon Puffing
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Less Confinement Degradation With Kr and Xe at High Radiated Power
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T. Profile Unchanged, Particle Confinement Better with Kr or Xe Puffing
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INTERPRETATION OF REsuLTs BY TRANSP




T; and lon-Electron Equilibration Power Higher with Kr or Xe Puffing
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lon-Electron Power Compensates for Increased Radiation Loss
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lon Thermal and Momentum Diffusivities Lower With Xenon

"0 0.5 1.0
minor radius r/a



RADIATIVE PLASMA HAS HIGH Prap
BuT LITTLE TEMPERATURE CHANGE

Krypton or xenon puffing increases the radiated power.

Core density rises, and

Higher gje offsets increased P54 in the electron channel.

Lower net heating in ion channel, but T; doesn't drop.

Need a stiff transport model near marginal stability?




PRrRoFILE CONSISTENCY IN
HicHLY-RADIATIVE PLASMAS




T Profile Consistency Maintained at High Radiated Power Fractions fg

8000 -
[ time fr (%)
6000 -~ — B —— 330 22 -
[ —— 374 88 ]
4000 | -
- argon ]
Qo 2000 I~ mag. axis normalized p
> i +
"C_G' 0 n n n 1 n n
& 8000 . — — ]
g- B — time fg (%) -
() 6000 |- — 345 26 -
~ C ]
< - —— 445 90
© 4000 krypton -
5 i ;
— p— \\ —
L 2000 mag. axis normalized .
] B ~
.2 O [ 1 + 1 |*
5 8000 e —————
in) - S time fg (%) -
6000 |- —— 350 27 -
4000 - xenon — 470 76 .
2000 mag. axis normalized ]
0 i 1 + 1 |¢ 1
240 260 280 300 320 340
radius (cm)



ComPARISON OF REsuLTs wiTH MoDEL
PREDICTIONS




MobDEeL T, DrRop Too LARGE; T, CHANGE HAS WRONG SIGN
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KRYPTON AND XENON WORKED WELLFORTFTR

Multi-megawatt levels of radiation in high power supershots (>30 MW)

— Lower heat load to limiter

— Confinement unchanged or improved

— Reduced deuterium and carbon influxes
— Negligible dilution of core fuel ions

— Higher fusion power

— Record fusion energy for TFTR

Argon tested at lower power (PnB1 < 22 MW)

— Confinement effect not as favorable
— Carbon influx higher at modest puff rates
— Higher dilution




SUMMARY OF EXPERIENCE WITH HIGH-Z RADIATORS

Greatly ameliorates divertor heat-load problem for large
machines.

— Power flow to edge reduced by two-thirds
— Performance improved

Edge recycling reduced.

Particle confinement improved.

Profile consistency maintained.

— Suggests need for "stiff" electron thermal transport models.




