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Topics
e Guiding center model of single particle motion at small gyroradius
e Gyroangle and locally orthogonal coordinates tied to magnetic field
e Second order expansion: Hamiltonian/Lagrangian
e 3D field: magnetic field torsion and coordinate system twisting
e GC higher order validity and global coordinate system existence
e Time-scales, magnetic vector potential, and geometric approximations

e Summary

(for details, see L. Sugiyama, Phys. Plasmas 15, 092112 (2008))



Guiding Center Model - Single Particle Motion

A 2

e Guiding Center (GC) model for the motion of a single
charged particle separates the motion into fast gyration
around magnetic field lines and a slowly varying GC

motion, with particle position

EV | -
=X 4+ —C. 1
x =X+ ¢ (1)

Particle velocity v = (v, {,v1) is written in terms of

a gyroangle ¢ with direction v; = v, ¢ X b, where
v. = b x (v x b), b =B/B, x is the particle and X
the GC position.

— Expansion in small gyroradius p/L ~ ¢ < 1, where p = v, /Q, Q = ZeB/mec,
and L is a system scale length. Fast gyrofrequency (9/0t) /2 ~ e.

e Gyroangle defined in local orthogonal coordinates tied to the magnetic field lines
at each point in space, axes (&, €2, f)). Originally defined from particle position,

transformed to GC position.



3D Magnetic Field

e Always possible to define locally orthogonal coordinates at each point of the mag-

netic field. Relation between coordinates at different points not specified.

e Gyroaverage defined in terms of cumulative gyroangle, (f) = §d¢ f = 0277 d¢ f

over non-closed curves. In 3D fields, a globally consistent definition may not exist!

e In 2D slab (straight, uniform magnetic field lines), a simple connection exists and

the GC expansion in small gyroradius is exact to all orders.

e In 3D, the curl of a vector field in a given direction is twice the rate of rotation of

the field around that axis, as seen when moving in that direction.
— Magnetic field torsion 7 = b-V X b is the twisting of the field line when moving
along itself. (Usually nonzero — plasma parallel current J; = b-V x B = Bt.)

— Torsion also introduces twisting of the local field-tied orthogonal coordinate sys-

tem, R = (Vé;)-é; = —(Véy)-é;. (Def’'n: given a vector x, x-R = (x-Vé;)-62.)



e For nonzero 7, gyromotion mixes parallel and perpendicular directions.

— For any small closed curve C surrounding a field line that encloses a surface S that has normal

direction ng along b at one point P on the field line,
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e An infinitesimal path around a
field line does not close.
Difference in parallel transport of vector
N along two parallel paths around B (B
points out of page). Inset: Closed path

corresp. to Eq. (2). Torsion contribution

is out of plane.

e The angle nonuniformity due to torsion is a real physical effect; appears in many

areas (Aharonov-Bohm effect, Berry phase, related to Dirac magnetic monopole)



e Equations of motion

dr dv q
il mo = qE(r,t) + p X B(r,t) (3)
e Transform particle to guiding center phase space coordinates

(I‘, V, t) — (X7 Uyl Cyv1, t) — (X7 U||9 G, w, t)v

where w = (uB/m)'/?

e Time derivative d¢{/dt contains 3D effects

d¢/dt = (9¢/0t) + (v - V)¢
0/0r = 8/0x + (0v)/9x)(8/dv)) + (8v./0x)(8/8v.) + (8¢/9x)(8/C)
9¢/0x = (v)/vi)(¢-V)b+R. (4)

e Poisson brackets used in the Hamiltonian and Lagrangian equations
{F,G} = (0F/0x)(0G/0v) — (0G/0x)(OF/Ov) + e 'B - ((OF/8v) X (8G/8V))(5)

Bracket {(,w} contains the torsion.



GC expansion in small gyroradius

e €’: GC moves along B.
(x) =X, (v) = v (6)

e ¢!: GC drifts across B appear

é=ﬂ[1+—ewﬂ(1f)-VxB+B-R_
B w \2
cww [1- A -
<’U||>:U||[ _EFII(E VXb—b°R/] (7)

— Torsional terms 7 = b -V x b and Ty = b-R appear.

— Nonuniform gyroangle due to torsion— nonuniform gyroperiod, velocity space
nonuniformities:
Particle sees longer or shorter gyroperiod depending on whether it moves parallel
or anti-parallel to B, and how far it moves along B in one gyroperiod. Due to

magnetic torsion, the baseline direction for defining ¢ rotates along B by (1/2)7.

(Northrup-Rome 1978: | motion to O(€?), || to O(e))



e ¢2: No direct derivation from equations of motion. Hamiltonian/Lagrangian non-

canonical phase-space variable methods were developed to extend the expansion to
second and higher orders (Littlejohn 1979-83, Brizard 1989).

Eliminate the geometrical terms b-V x b andb-R from the dynamical equations, keeping them

only in the gyroangle time derivative ¢ and (v))-

Method: add free functions (gyrogauge) to the Lagrangian and define their gyroaverages appropri-
ately.

Effective magnetic vector potential A* simplifies the expression for the guiding

center phase space Lagrangian I' (Littlejohn 1983, Brizard-Hahm 2007),

A* = A+ EU”B — 62[,LR
I = (1/e)A" - dX + ep d¢ — ((1/2)U} + pB)adt. (8)

The curl V X A* in GC space coordinates X is needed for the equations of motion.

Problem: The effective magnetic field B* = V x A* (Northrup) or the quantity
V X R (Morozov-Solov’ev) is always defined for GC problem, but the correspond-
ing vector potentials A* or R do not have to exist everywhere.

At O(€?), existence of R requires globally consistent magnetic coordinates (vec-

tor fields €, and é;) such that the gradients Vé; and Vé, are defined.



Torsion and geodesic torsion

e If plasma has good magnetic flux surfaces ¥, B - V¥ = 0, then &é; can be defined
so that 7, = b - R is the (negative) geodesic torsion 7¢ of a field line on a flux

surface.

e Vector curve as function of arc-length s: Serret-Frenet equations (DoCarmo 1975)

Tangent unit vector t, normal i in kK = b - Vb (curvature) direction, binormal 3 = t x i.
t'(s) = kN
n'(s) = —kt — 70 ;

A'(s) = Th. (9)

e Curve on an oriented surface: Darboux equations

N is inward normal to surface, T = t, binormal V =T x N.

T'(s) = knN + keV
N'(s) = —knT — 16V
V'(s) = —keT + maN. (10)

Geodesic torsion 71 is rotation of surface-normal and binormal axes around field line.

A~
A

Kk is the normal curvature and k¢ the geodesic curvature. ™ — 7¢ = df/ds, where cos @ = N - ii.

Defining 6, = —N = V¥ /|V¥|, then 7, =b-R =b - (V&) - & = —7¢.



Locally orthogonal magnetic coordinates for 3D fields

e Existence of locally orthogonal magnetic coordinates throughout a volume is equiv-
alent to existence of a family of triply orthogonal surfaces in the volume, one family
aligned with each axis. (Triply orthogonal: a unique surface from each family passes

through each point and the three intersecting surfaces are pairwise orthogonal.)
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e Fails where a consistent perpendicular directions cannot be

0.5+

defined for field lines across a curve or surface

0.0

— On magnetic axes, O-points, and X-points.

05—

— On boundaries between magnetic regions of different

topologies

— In truly stochastic fields
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¢ Requires good magnetic flux surfaces, but may still fail.

— Choose é; = V¥ /|VV¥| to be the normal to the surface, so 7, = —7¢. The
coordinate systems are then consistent on each flux surface. The problem is to

match coordinates across flux surfaces.

e For toroidal plasmas, existence is closely related to Newcomb'’s solvability condition
for b- Vi) = S. A solution exists in a toroidal plasma if and only if $dl S =0 on

all closed field lines on rational magnetic surfaces.

— Early Hamiltonian/Lagrangian GC theory defined a gyrophase 1 in the gyroangle,
¢’ = ¢+, where b- Vi = (1/2)b-V x b+b-R. It did not satisfy Newcomb
solvability (Hagan and Frieman 1985).



e I.If b-V x b = 0 for a vector field with unit direction b, then there exists a surface
normal to b (Kelvin, 1850’s, fluid vorticity). Condition B-VxXB =00or VxB =0
is necessary and sufficient for the existence of global planes perpendicular to the

magnetic field lines, since the field then has the form B = fVg for two functions
f and g.)

e Il. Given magnetic flux surfaces, classical differential geometry (DoCarmo, 1975)
states that 7, = 0 is the necessary and sufficient condition for existence of a set of

triply orthogonal surfaces, one defined by field lines and one by flux surfaces.

— On an (oriented) surface, at any point there is a maximum and a minimum value
of the surface curvature Ky, corresponding to two curves passing through the
point. These are the lines of curvature of the surface at the point and have
7¢ = 0. Dupin’s theorem states that, if three families of surfaces form a triply
orthogonal system, then the surfaces must intersect in lines of curvature. Thus
the magnetic field lines must have 7¢ = 0 and since they densely cover each
flux surface, 7, = b - R = 0 (almost) everywhere. In general fields, 7, = 0 is

equivalent to 7 = 0, zero torsion.

— T4 = 0 is equivalent to &; - V x &; = O for all three axes in Eq. (11), so that

three mutually orthogonal surfaces exist, one perpendicular to each axis.



A

Magnetic coordinate rotation b - R

o Assuming that the gradients V¢é; are defined everywhere, it can be shown that b-R

depends on all three orthogonal axes,

A

1. )
b-Rzi(b~Vxb—él-(Vxél)—é2~(Vxé2)>. (11)

Derivation:
R = (Vél) -8y = 69 X (V X él) + (éz . V)él (12)
Since &, - &, =0, b- (V&) -8, = —b . (V&) - &, so that
(Vé1) -8, = —&1-(V X&)+b-(82-V)é&
(V&) -8 = —&3-(V X&) —Db-(&-V)é,. (13)
Adding and using b -V x b =b-V X (&1 X &) =b - [(62- V)&, — (& - V)&, gives the result.
e The perpendicular component is

R, =& (b-Vxé&)+éb-VXxé&)=bxr+&(V-8&)—6(V-8). (14



e Egs. (11)—(14) assume that the third coordinate axis é; defines a continuous vector
field with well-defined gradient and curl, locally orthogonal to é; and b.
A nontrivial existence condition involves second derivatives of . Assuming that

flux surfaces with surface normals é; = VW /|V | exist, so that &, - V X & = 0,
8-V Xé=Db-Vxb—2b.: (& V)(VI/|VE|), (15)

Substituting é; = b x V¥ /|V¥|, Eq. (15) becomes a relation between b and V¥
so that such an é; exists.

e Torus: Equilibrium force balance, J X B = Vp implies a natural coordinate &, =
VI/|VI| with éy - V X &y = 0, that is not generally orthogonal, VI - V¥, £ 0.
In canonical magnetic coordinates (Boozer), not necessarily orthogonal, B = V¥ ,xV¢+V¥;x V0,
and good flux surfaces ¥, require that ¥, = ¥,(¥,). Then B =V X (IV¥,), where I(¥,,0,¢) =
—(d¥,/d¥,)0 — ¢.



Coordinate existence condition has n-dimensional
analogue

e In terms of manifolds and differential forms, the corresponding n-dimensional result
for the existence of locally orthogonal coordinates tied to a field shows that the
problem is one of linking the twisting of the different coordinate systems, ie, the

affine connections (Flanders, 1989).

e Possible iff the generalized differential curvature form 2 = 0.
e In three dimensions, this is equivalent to

zero torsion of the vector field.

e In four dimensions, non-zero curvature is

possible.

— Theories of quantum gravity attempt
to attach small scale, locally orthog-

onal quantum theory to large scale,

curved space-time



GC/GK Time Dependence

e The time-dependent magnetic vector potential term in the electric field in Ohm’s

law, E 4+ v X B ~ 0, also affects geometrical accuracy in 3D.

— Perpendicular: Ordering —(1/¢c)0A /0t K V| ® (electrostatic potential) drops
the compressional Alfvén wave and makes the geometrical approximation
V. (BB.V@) — (b-V)(b-V®) — (1/B)(b-VB)(b - V&) ~ 0.

— Parallel: Ordering —(1/c)0A /0t K V| ® drops the shear Alfvén wave and

makes geometrical approximation b.-V® ~ 0.

e Analytic GC/GK models drop the compressional wave, keep shear Alfvén. Velocity

moments yield reduced MHD.

e Numerical GK particle models usually drop or approximate the parallel A /9t for
numerical reasons. Part of the shear Alfvén wave appears through the nonlinear

polarization drift.

e Both approximations encourage an artificial enhancement of turbulent and zonal
poloidal ExB flows with V||® ~ 0, ie ® ~ ®(7r).

— GK simulations see robust zonal flows vgg ~ ETB¢/B2, while experiment is

more ambiguous.



Implications and Connections

¢ Nonexistence of the GC expansion at higher order implies that the magnetic moment
p = (1/2)mw? /B cannot be shown to be an invariant at that order by the GC

analysis; p is a first order invariant in general 3D fields.

e Since time-evolving fields will in general break any 2D symmetries, GK models that

keep the exact 3D geometry can be at most first order in gyroradius.

e Twisting of field-line-tied coordinate systems in 3D is a real physical effect. Velocity
space nonuniformities due to 7 and 7, appear in all GC and related models at first

order.

e FLR fluid models valid to all orders in e (Ramos 2005) assume the gyroradius smaller
than all other scales, including the fluid element. Unlike GC/GK, yields full, not
reduced MHD. Still puzzling.

e Lagrangians are closely connected to vector potentials.

— Lagrangian formalism describes strictly local relations; existence of (effective)

vector potential is a separate, non-local condition.

— Higher order existence problem involves gradients, not basic variables.



Summary

e Guiding Center model: gyroangle around GC introduces field-line-tied coordinates.

e In 3D magpnetic fields, nonzero field line torsion b - V X b imposes strong nonlocal,

topological constraints on the validity of the GC expansion.

— First order in €: velocity space nonuniformities

— Second order: existence!

e Second order GC equations exist in 3D only when the local orthogonal magnetic
coordinate systems defined at each point on a field line can be extended to a global

coordinate system in a volume.
— Requires good magnetic flux surfaces and either 7 = 7, = 0 or a 2D symmetry

e Nonexistence of GC expansion at higher order means that it cannot be used to prove

that magnetic moment p is an invariant at that order; need different proof.

e In 3D, geometrically exact GC/GK equations require keeping electromagnetic vector

potential terms OA /9t in the electric field at the same order as V®.



— Time-dependent, geometrically exact GK model can be at most first order for
3D fields.

— Assuming —(1/c)0A /9t K —V &, as in some numerical GK models, increases

poloidal ExB flows with E ~ —V ®(r) and may encourage zonal flows.

e The GC coordinate existence problem has analogies to the problems encountered

by unified theories of physics, such as quantum gravity, relative to 4D space-time.



