

Supported by

Halo Currents, Disruption Detection, and a Few Comments on the Pre-Disruption Phase

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

S.P. Gerhardt

A. Boozer, E. Fredrickson, J. Menard, S. Sabbagh, and the NSTX Research Team

PPPL Disruption Theory and Modeling Workshop PPPL 7/17/2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

Outline

- NSTX Halo Current Results
 - NSTX instrumentation and typical time evolution.
 - Time scales and peaking factors.
 - Some data on HC rotation dynamics.
- NSTX Disruption Predictor
 - Algorithm description.
 - Results and extrapolation.

If I have time

• Comments on the importance of the "pre-disruption" phase.

Outline

NSTX Halo Current Results

NSTX Disruption Predictor

If I have time

• Comments on the importance of the "pre-disruption" phase.

Quick Review of NSTX Halo Current Diagnostics

•NSTX has electrically isolated inner and outer vessels

•Center stack and horizontal inner target are electrically isolated from outer divertor and outer vessel.

•Connected by a long run of copper.

Different Detector Techniques:
Partial and full Rogowskis on the CS
Toroidal field sensors on the vessel wall
Small rogowskis on LLD grounds
Resistive shunts under tiles.

Current Increase on Previous Slide Corresponds to "Arcing" Across the CHI Gap

- Increase in vessel current corresponds to plasma forming in gap:
 - t=189.56 ms: gap is still dark
 - t=190.56 ms: gap begins to show light
 - t=191.56 ms: gap is completely full of plasma
- Once arc forms, there is a large drop in the currents in bus work connecting inner and outer vessels.
 - But large increase in current magnitude.
- Theory implication:
 - conducting paths may not be well known in advance.
 - Insulating structures may not insulate.

Your Measurement of Peaking Factor Depends on How Where You Measure the Halo Currents

- Theory implication: Codes should compare their TPF output to the correct measurements (likely the TPF at the entrance points).
 - Paths in the wall determined by Ls and Rs of the available paths.

Halo Current Duration is Often Much Shorter Than the Current Quench

S.P. Gerhardt, et all., Nuclear Fusion 52 063005 (2012)

What are the Relevant Time-Scales in NSTX?

- Current Quench Time: 2-15 ms
- Halo Current Time: 1.5-4 ms
- VDE time: 10-30 ms
- Time-scale for halo currents to grow: ~0.5-1 ms
- Alfven Time ($n_e = 5x10^{19} \text{ m}^{-3}$): $\tau_A = 1 \mu s$
- Lundquist numbers:
 - Plasma during quench: 10⁵
 - High-performance phase: $10^7 \quad S = \frac{\mu_0 L V_A}{\eta}$

Performance
$$I$$
 and I and

Halo:
$$\tau_{h} = \frac{\mu_{0}}{\eta_{hp}} a\Delta_{h}$$
; Wall: $\tau_{w} = \frac{\mu_{0}}{\eta_{w}} a\Delta_{w}$; Plasma: $\tau_{p} = \frac{\mu_{0}}{\eta_{p}} a^{2}$.
If $Z_{eff}=2, T_{e}=10 \text{ eV}$,
 $a=40 \text{ cm}$
 $\eta=4 \times 10^{-5} \Omega \text{ m}$
 $\tau_{h}=0.5 \text{ ms}$
 $\Delta_{w}=1 \text{ cm}, a=0.4 \text{ m}$
 $\eta=17 \ n\Omega \text{ m} = 1.7 \times 10^{-8} \Omega \text{ m}$
 $\tau_{w,Cu}=0.3 \text{ s}$
 $\tau_{w,SS}=7 \text{ ms}$
So, satisfies $\tau_{A} < <<<\tau_{h} < <\tau_{P} < <\tau_{w,Cu}$

 $\eta_{\rm H} = \frac{1.03 \times 10^{-4}}{2} Z \ln(\Lambda) T_e^{-3/2}$

For Fast VDEs, Halo Currents Can Lead the Current Quench Example: Deliberate VDE w/ Downward Push

Strongly Non-Axisymmetric, Rotating Halo Currents Detected in the NSTX Lower Divertor

1.0

0.8

0.35 0.36 0.37 0.38 0.39 0.40 0.41 time [s]

[W] 0.6 [W] 0.4 0.2 0.0

a)

Strongly Non-Axisymmetric, Rotating Halo Currents Detected in the NSTX Lower Divertor

Li I Camera Images Confirm Rotation of Structure Four Times

Neutral lithium light most indicative of surface interactions

More information on the rotation dynamics to be presented in talk by T. Hender

Halo Currents Become Symmeterized In the Final Phase of the Disruption: Example on OBD

•

Halo current contours are toroidally symmetric starting at ~0.4135 s

Halo Currents Become Symmeterized In the Final Phase of the Disruption: Example on OBD

PPPL Dis. Theory and Modeling; Gerhardt (7/17/2013)

Outline

NSTX Halo Current Results

NSTX Disruption Predictor

If I have time

• Comments on the importance of the "pre-disruption" phase.

Warning Times Defined With Respect to the Current Quench

Individual Threshold Tests Form the Basis For Detection

- n=1 perturbation inferred from array of 24 in-vessel poloidal field sensors
 - Useful for detecting resistive wall modes, locked modes

threshold	% Late Warning	% False Positive	% No Trigger
5 G	4	35	0
10 G	13	5	2

- Often a significant drop in neutron emission proceeding a disruption.
- Estimate the neutron emission from a simple slowing down model.

• T_e, Z_{eff}, n_e are inputs.

threshold	# Late Warning	% False Positive	% No Trigger
0.7	1	18	14
0.4	2	4	27

Developed a Method to Combine These Tests For Improved Prediction

- No one of these diagnostic tests was good enough to predict all disruptions.
 - Must combine the tests in some fashion.
- Algorithm summary:
 - Note: Low threshold levels lead to high false positive rates, few missed disruptions.
 - Take a series of ~15 threshold tests like those previously described.
 - Foe each test, assign a number of "points" for various thresholds, for instance:

	Test	1 pt -> 2% False Positive Rate	2 pt ->1% False Positive Rate	3 pts -> 0.5% False Positive Rate
Table for 3- level detection (full table has 15 rows)	n=1 B _P Perturbation [G]	16	22	27
	Neutrons, Meas./ Model	0.4	0.35	0.29
	V _{loop} , Meas./Model	10	16	24

- Evaluate tests at each time-slice, sum the points from threshold tests to form an "aggregate" point total (APT).
- Declare a disruption warning if the aggregate point total (APT) exceeds a chosen value.

S.P. Gerhardt, et al., Nuclear Fusion 53, 063021 (2013)

Examined Many Threshold-Based Disruption Indicators Leading or Trailing The Start of the Disruption Process

- Instantaneous Stability
 - -Vertical motion indicators. (Trailing)
 - -n=1 perturbed fields. (Trailing)
 - -Low-frequency, large amplitude rotating MHD modes. (Trailing)

MHD Equilibrium

- $-F_P=p_0/, I_i$ (Trailing)
- $-q_{95}$, q^{*} (Leading)
 - (β_N alone has no predictive value).
- -Boundary-wall gaps (Leading)
- Transport indicators for comparisons to simple models
 - -Neutron rate (Trailing)
 - -Stored energy (Trailing)
 - -Loop voltage (Trailing)
- Other
 - -Line-average density transients (Trailing)
 - -Rotation and rotation shear (Leading)
 - -Radiated power ratio (Leading)
 - –Deviations between the current and the I_P request (Trailing)

Warning Level Increases Monotonically Towards the Disruption

Warning Level Increases Monotonically Towards the Disruption

🔘 NSTX-U

3-Level Warning Rule Can Predict Most Disruptions

5-Level Warning Rule is Even a Bit Better

Sources of False Positives

Example False Positive Due to Mode Lock

1.0

a)

C)

Theory & Extrapolation Issues

- Key objection is (clearly) that the coefficients are based on a database of NSTX data.
- However, many of these test assess loss-of-control (LoC)
 - Test on n=1 B_P perturbation: loss of RWM (or LM) control.
 - Test on I_P deviations: loss of I_P control.
 - Test on dZ_P/dt , or $Z_P dZ_P/dt$: loss of vertical position control.
 - Test on H_{89} : loss of β -control.
- Replace these with first-principle control estimates
 - Example: vertical control
 - Realtime calculations/estimates of Δz_{max} (maximum controllable displacement)
 - Realtime measurements/estimates of the disturbance spectrum.
 - Model based control of the vertical position.
 - NSTX Example: State-Space RWM controller
 - Use this to generate LoC warnings (future work).
- Potential simplifying fact: ITER will have only a few target scenarios, NSTX has *many, many* scenarios.

Outline

NSTX Halo Current Results

NSTX Disruption Predictor

If I have time

• Comments on the importance of the "pre-disruption" phase.

Detection is Less Effective if Defined With Respect to the Initiation of the Disruption Process

- Disruption process initiated by some locked mode, RWM,...
 - Confinement loss follows.
 - Lots of loop voltage applied by PCS.
 - Position control can fail
 - Thermal quench is delayed by some duration.
 - Rely on that phase for detection.
- Exercise: Recompute warning statistics with respect to the first I_P negative deviation.
 - Use this as a surrogate for the initiating event in the disruption process.

S.P. Gerhardt, et al., Nuclear Fusion 53, 043020 (2013)

Detection is Less Effective if Defined With Respect to the Initiation of the Disruption Process

- Disruption process initiated by some locked mode, RWM,...
 - Confinement loss follows.
 - Lots of loop voltage applied by PCS.
 - Position control can fail
 - Thermal quench is delayed by some duration.
 - Rely on that phase for detection.
- Exercise: Recompute warning statistics with respect to the first I_P negative deviation.
 - Use this as a surrogate for the initiating event in the disruption process.
- Result: Very poor prediction efficiency.
 - Interesting question: are disruption dynamics different if there is no solenoid to provide "stabilizing" loop voltage.

Warning at APT=4 Points

<22% late warning, ~13% false positive Sum: 35% Warning at APT=8 Points

~45% late warning, ~3% false positive Sum: 48%

S.P. Gerhardt, et al., Nuclear Fusion 53, 063021 (2013)

Understanding the Pre-Disruption Phase is Key: Energy Loss

Period after modes have locked, H->L transition, but before the thermal quench This phase determines the energy at the thermal quench **JET:** Energy Evolution 8 **NSTX Data:** Large Fractional Stored Energy Drops Are Typical, Especially 6 W_{dia}(MJ) in the Later Flat-Top Ramp-Up a) - mode lock 800 2 — ІТВ **Early Flat-Top** - H-I Late Flat-Top # of Disruptions 0 **Ramp-Down** 600 -0.6 -0.8 -0.4 -0.2 -1 0 time (s) JET: Energy Loss Fraction 400 0.4 0.35 **Relative Probability** 0.3 200 0.25 02 0.15 0.1 0.2 0.6 1.2 0.0 0.4 0.8 1.0 0.05 $W_{MHD,D}$ / $W_{MHD,MP}$ 0 0.4 0.5 0.6 0.7 0.2 0.3 0.8 0.9 0.1 W_{t.g.}/W_{dia}max S.P. Gerhardt, et al., Nuclear Fusion 53, 043020 (2013) V. Riccardo, et al., Nuclear Fusion 45, 1427 (2005)

Understanding the Pre-Disruption Phase is Key: Actuation and MGI

Period after modes have locked, H->L transition, but before the thermal quench

This phase is the last opportunity for "actuation": $B_{Fus}^{B.I}$ ECH applied to high- β 2/1 island in ASDEX-Upgrade

B. Esposito, et al., Nuclear Fusion **51**, 083051 (2011)

Roughly similar results for density-limit disruptions in ASDEX-Upgrade and FTU. However, subtle differences in details of where the ECH was deposited for maximum effect.

Also: presence of large modes may impact mitigation dynamics (M. Lehnen talk)

Also highly relevant: Work on DIII-D by F. Volpe and students, N. Eidietis,...

Understanding the Pre-Disruption Phase is Key: Detection

Period after modes have locked, H->L transition, but before the thermal quench Signals in Recent ANN & Similar Disruption Studies Similar to NSTX Study (often normalized, sometimes with time derivatives):

Z_P [4,5,8] P [1,2,4,5,6,8] **Q**₉₅ [1,3,4,5,6,7] Mode Lock [1,3,4,5,6,7,8] P_{rad} [1,4,5,8,9] **Or** P_{rad.frac} [3] P_{net} or P_{in} [1,4,5,6,7,8] **n_e** [1,2,4,5,6,8] **Or f**_{GW} [3,7] L; [1,3,4,5,6,7] W_{MHD} or W_{dia} [1,2,4,6,8] β_{P} [1,4,5,6,7] Or β_{T} [2] Or β_{N} [2,3 **H** [3] $< T_{e} > [2]$ **S_N** [2] S_N/W_{dia} [2] S_P (shape) [2], δ [2]

Figure 2. Some plasma parameters, and the corresponding alarm function for the pulse #16513.

B. Cannas, et al, Nuclear Fusion 44, 68 (2004)
 R. Yoshino, Nuclear Fusion 45, 1232 (2005).
 C.G. Windsor, et al, Nuclear Fusion 45, 337 (2005)
 B. Cannas, et al. Nuclear Fusion 46, 699 (2006)

[5] B. Cannas, et al, Nuclear Fusion 47, 1559 (2007)
[6] A. Murari, et al., Nuclear Fusion 49, 055028 (2009)
[7] B. Cannas, et al, Nuclear Fusion 50, 075004 (2010)
[8] A. Murari, et al., Nuclear Fusion 53, 033006 (2013)

Understanding the Pre-Disruption Phase is Key: Theory Aspects

- What physics determines the duration of this phase?
 - Time for growth of multiple islands? How big before the TQ?
 - Ratio of volume in isolated islands vs. good surfaces vs. stochastic regions? What sets the transport/confinement?
- What actuators are best used during this phase?
 - How far into this phase will any given actuator be effective?
 - For ECH, which rational surface or mode to target?
 - Can it be the sub-dominant mode in a coupled mode situation?
 - How to align the locked modes with the ECH (RMP as in DIII-D)? Refraction?
- How does the physics and actuator response change with $n_e \& q_{95}$?
- Are there scenarios prone to not having this phase?

– Yes: ITB/high- β disruption...any others? Does this disqualify them?

- Will the very large stored energy losses in an ITER or DEMO truncate this phase due to impurity generation effects?
- What about the ST?
 - Unlikely to have a solenoid, will not have ECH.
 - EBW is hard enough during the stationary phase...
 - Available actuators are the NBs, outer PF induction, maybe 3D fields.

Summary

- Halo currents:
 - Halo currents are observed jump "insulating" breaks.
 - Peaking factors at the location of current entrance appears to be meaningfully larger than in the vessel wall.
 - Typical pattern at the entrance point in NSTX is a toroidally localized lobe, which is often rotating.
- Disruption Detection:
 - Technique in NSTX is based on summing the outputs of multiple individual threshold tests.
 - Works fairly well (~6% total failure rate).
 - However, relies on there being a meaningful "pre-disruption" phase.

Backup

Understanding the Pre-Disruption Phase is Key: Actuation (II)

Period after modes have locked, H->L transition, but before the thermal quench

This phase is the last opportunity for "actuation": ECH + RMP applied to high- β 2/1 island in DIII-D

RWMs and Ideal Modes Dominate Late/Missed Warnings

- ~1/2 of the RWM disruptions are proceeded by gradual rise in pressure peaking (~100 ms timescale) or magnetic braking.
 - Other half are fast disruptions, hard to detect in advance.
- Disruptions due to mode lock, VDEs, & gap control problems could be eliminated, at the expense of higher false positive rates.

Largest Stored Energy Disruptions in NSTX All Come from Loop Voltage Reversal

- 1100-1200 kA pulses, high highest energy, and use flux the fastest.
- Software simply reversed the loop voltage when the OH current limit was reached.
 - Disruption follows nearly immediately.
 - 21 of 22 largest energy disruptions, and all but with with W_{dis} > 275 kJ.

Further Examples of Halo Current Rotation Dynamics

Key Observations

Dominant structure is typically a toroidally-rotating lobe. Rotation is typically in the counter-direction, except for short bursts.

S.P. Gerhardt, et all., Nuclear Fusion 52 023005 (2013)

Use a Model Fit Function To Better Resolve the Halo Current Dynamics

- Observed structure is a toroidally localized lobe.
- Apply a fit function with
 - DC offset (f_0)
 - lobe of variable toroidal width (f_4) and amplitude (f_1)
 - Explicit rotation frequency (f_3)
- Divide data into δt~0.1 ms width windows, and fit data from all six tiles during each window.
 - Fitting windows allows the features to rotate over the tiles during periods of fits.

Dominant Structure of the Halo Current is a Rotating Toroidally Localized Lobe of Current

44

of Rotations is Observed to Scale Inversely with Halo Current Magnitude

- Compute the rotation dynamics during time when n=1 halo current is >25% of its maximum.
- Compare to the time average of the maximum halo current magnitude.
 - Rotation frequency usually lower at high amplitude.
 - Pulse duration usually lower at high amplitude
 - Total # of rotations drops at high amplitude

Fits Reveal Dynamics of the Halo Currents

Halo Currents Become Symmeterized In the Final Phase of the Disruption: Example on Secondary Passive Plate

PPPL Dis. Theory and Modeling; Gerhardt (7/17/2013)

Statistical Analysis Shows Less Rotation in Cases With Strong n=1 Fields

- Large n=1 fields are often applied by the RWM control system during a disruption. Due to:
 - Actual 3D distortions of the plasma
 - Toroidal & non-axisymmetric eddy currents leading to incorrectly identified "modes".
 - On-line doesn't have v_{loop} sensor compensationsas in the off-line analysis.
- Result of database study:
 - Rotation frequency tends to be smaller when the n=1 field is higher.
 - No effect on the pulse duration

Reduced # of toroidal revolutions with large 1 fields

n=1 Fields Did Not Modify HC Rotation **During Deliberate VDEs**

1.00

0.75

0.50 0.25

0.00

0.2

Ŏ.Ō -0.2

-0.4

-0.8 50.0

37.5

I_P [MA]

_{axis} [m]

Z_{mag.} -0.6 C)

d)

e)

- Deliberate VDE are prone to *very large* halo currents, few toroidal revolutions.
 - Shots with no n=1 fields (140444 and _ 140452) shows zero and a single rotation.
- Shots with large n=1 applied field showed between 0 and 1.5 asymmetry revolutions.
 - 140453: 0.8 kA n=1, ~1.25 revolutions.
 - 140454: 1.6 kA n=1, ~1.5 revolutions, with an apparent locked mode!
 - 140455: 1.2 kA n=1, ~1.5 revolutions.

Dynamics of the **Disrupting Phase**

140444 140452 140453 140454 140455

Upward VDEs Yield Odd Halo Current Pattern

