Summary Session III: Halo & Hiro Currents and Forces Discussion Topics

R. J. Hawryluk

July 18, 2013

Topics for Discussion

- What are the outstanding issues associated with VDEs and axisymmetric halo currents?
- What is the difference between halo and Hiro axisymmetric and asymmetric currents?
- What determines the magnitude and direction of the currents and rotation of the instability?
 - What determines the duration of asymmetric currents?
- Is the large inter-machine and intra-machine variability understood?
 - Does the variability provide clues regarding what can be done to decrease the forces associated with halo and Hiro currents?
- If we cannot interpolate the JET sideways force results to AUG, what are the implications for the extrapolation to ITER?

Different physics of Hiro, Evans and halo, if any, currents 12/16

The physics of Hiro and Evans currents is different from the physics of halo currents and summarized in the Table.

	Hiro currents	Evans currents:	Halo currents:	
1	Both result from magnetic flux conservation.		Derived from questionable use of equilibrium	
			reconstruction. No strong reason for existence.	
2	Driven by instability acting	Driven by instability acting	Assumed to be driven by a residual voltage out-	
	as current generator.	as voltage generator.	side the last closed magnetic surface.	
3	Highly concentrated at the plasma edge.		Diffused in space with open field lines.	
4	Big in amplitude, proportional to plasma deforma-		Limited by the ion saturation current.	
	tion.			
5	Absolutely necessary to	Force-free, little, if any, ef-	Secondary, if any, effect on stabilization.	
	slow down the instability.	fect on stabilization.		
6	Opposite to p .	Same direction as I pl.	Same direction as I pl.	
7	Consistent with toroidal		Ruled out as a reason of toroidal asymmetry.	
	asymmetry in JET VDEs.			
8	The real plasma physics objects		Most probably the result of misinterpretation	
	May 2012			
9	Consistent with EAST VDE	No indication of presence	No indication of presence	
	measurements.			