MHD modeling in support of thermal quench and runaway electron mitigation for ITER

V.A. Izzo Theory and Simulation of Disruptions Workshop PPPL, 18 July 2013

with contributions from: J.G. Wesley, E.M. Hollmann, R.S. Granetz, G.M. Olynyk, J. Yu, A.N. James

Part 1. *Radiative* heat loads during a mitigated TQ: Toroidal (and poloidal) radiation peaking

 \rightarrow Spatial symmetry of radiated power is not just a function of the impurity distribution

Part 2: Runaway electron confinement during a mitigated TQ

 \rightarrow Evidence suggest that deconfinement by MHD fluctuations will not be an effective strategy for ITER

Part 1. *Radiative* heat loads during a mitigated TQ: Toroidal (and poloidal) radiation peaking

 \rightarrow Spatial symmetry of radiated power is not just a function of the impurity distribution

Part 2: Runaway electron confinement during a mitigated TQ

→ Evidence suggest that deconfinement by MHD fluctuations will not be an effective strategy for ITER

NIMROD extended MHD code is combined with KPRAD atomic physics code to model massive gas injection (MGI)

Ionized Ne density

Case 1: Toroidally symmetric Ne injection on the low field side (LFS)

Contours of injected neutral Ne density

Key results:

• MHD activity during the thermal quench (TQ) produces rapid mixing of impurities into the core

• Radiated power asymmetry occurs even with symmetric gas injection due to the 1/1 mode

Ne first diffuses slowly, then mixes rapidly when MHD modes appear

1/1 mode is primarily responsible for rapid mixing

DIII-D data illustrates rapid density rise caused by MGIinduced reconnection event

Hot core is expelled by the 1/1 mode at the time of the TQ

Radiated power spikes during TQ

Radiation asymmetry occurs even with a symmetric Ne source

1/1 mode responsible for both P_{rad} flash during TQ and rapid mixing of impurities

Mode convects particles from edge to core and heat from core to edge

Flow is aligned to pull impurities into the core mainly on one side of the

Cases 2 and 3: Toroidally peaked Ne injection on the low field side (LFS)

Key results:

• Location of radiation toroidal peak is determined by the phase of the 1/1 mode, may not be at the MGI valve location

• In the <u>simulations</u>, mode phase is determined by the source location (may not hold true in experiments)

$\nabla_{\phi} \mathbf{P}$ drives rapid toroidal spreading, then stagnation on far side of torus

Toroidal distribution of impurities at TQ has small peak on opposite side from source

Total P_{rad} compares well with DIII-D measurements within factor of two

Location of radiated power peak transitions from jet side to opposite side

Location of toroidal peak is opposite Ne injection site in both

Toroidal radiation distribution roughly given by square of impurity distribution times $n=1 T_e$ variation

As first observed on C-Mod: Adding a second valve really can make things

What if the mode phase changed relative to the injection location?

This is what happens in both simulations:

- Flow points from bigger Ne peak toward core
- Hot core hits smaller Ne density peak, TPF range from very symmetric to peaked on opposite side

- Flow points from smaller Ne peak toward core: worse mixing efficiency?
- Hot core hits maximum Ne density:

higher TPF, peaked at injection location?

Flipping the mode phase could result in very strong toroidal peaking

C-Mod finds connection between n=1 mode and radiation asymmetry

C-Mod finding: Faster growing n=1 mode leads to lower radiation TPF

NIMROD finding: n=1 mode "prefers" a particular phase (relative to gas jet), and that phase tends to minimize TPF

Speculation: Phase of n=1 mode varies in experiment, but when n=1 mode has the phase it "prefers" it grows faster, with the opposite phase it grows slower.

Summary of Part 1: Radiation asymmetry

- During an MGI shutdown, the 1/1 mode drives radial mixing of impurities and produces toroidally asymmetric heat flux
- Even with toroidally symmetric impurity injection, the radiated power is asymmetric
- The relationship between the 1/1 mode phase and the jet location(s) will be an important factor in determining the radiated power peaking
- We need more data on the 1/1 mode phase in MGI experiments; is it random or affected by the gas jet? does it rotate? (how much?)
- Much MGI data has been collected on many devices, but very little with more than one jet. We know ITER will have more than one jet, but $1+1\neq 2$ in the TQ phase. More multi-jet data is needed.

Part 1. *Radiative* heat loads during a mitigated TQ: Toroidal (and poloidal) radiation peaking

 \rightarrow Spatial symmetry of radiated power is not just a function of the impurity distribution

Part 2: Runaway electron confinement during a mitigated TQ

 \rightarrow Evidence suggest that deconfinement by MHD fluctuations will not be an effective strategy for ITER

NIMROD calculates drift orbits for RE <u>test-particles</u> during rapid-shutdown simulations

$$dR = \underbrace{\underbrace{\frac{1}{B}}_{\text{basic motion}} dt}_{\text{basic motion}} + \underbrace{\frac{1}{B^2} \left[V_R \left(B_{\phi}^2 + B_Z^2 \right) - B_R \left(V_{\phi} B_{\phi} + V_Z B_Z \right) + \eta \left(J_{\phi} B_Z - J_Z B_{\phi} \right) \right] dt}_{\vec{E} \times \vec{B} \text{ drift}}$$

$$dZ = \underbrace{\frac{v_{\parallel} B_Z}{B} dt}_{\text{basic motion}} - \underbrace{\frac{20 \, kT_e}{eB} \frac{1}{R} dt}_{\text{grad-B} \frac{1}{R} dt} \left[\underbrace{\frac{\gamma m v_{\parallel}^2}{eB} \frac{1}{R} dt}_{\text{curvature drift}} + \underbrace{\frac{1}{B^2} \left[V_Z \left(B_R^2 + B_{\phi}^2 \right) - B_Z \left(V_R B_R + V_{\phi} B_{\phi} \right) + \eta \left(J_R B_{\phi} - J_{\phi} B_R \right) \right] dt}_{\vec{E} \times \vec{B} \text{ drift}} \right]$$

$$d\phi = \underbrace{\frac{v_{\parallel} B_{\phi}}{RB} dt}_{\text{BB} \frac{1}{R} dt}_{\text{basic motion}} + \underbrace{\frac{1}{RB^2} \left[V_{\phi} \left(B_R^2 + B_Z^2 \right) - B_{\phi} \left(V_R B_R + V_Z B_Z \right) + \eta \left(J_Z B_R - J_R B_Z \right) \right] dt}_{\vec{E} \times \vec{B} \text{ drift}}$$

$$dv_{\parallel} = \underbrace{\frac{e\eta J_{\parallel}}{m_e \gamma^3} dt}_{\text{electric field}} - \underbrace{\frac{e^4 \ln \Lambda}{4\pi c_0^2 m_e^2} n_e \left(Z_{\text{eff}} + 1 + \gamma \right) \frac{1}{v_{\parallel}^2} \frac{1}{\gamma^4} dt}_{\text{curvature}} - \underbrace{\frac{e^2}{6\pi \epsilon_0 m_e c^3} v_{\parallel}^3 \gamma \left(\frac{1}{R_0^2} + \frac{19.4 e^2 B^2 v_{e_{\parallel}^2}}{m_e^2 v_{\parallel}^4} \right) dt}_{\text{synchron}} - \underbrace{\frac{e^4 \left(Z_{\text{eff}} + 1 \right)}{548 \pi^2 \epsilon_0^2 m_e^2 c^2} \frac{1}{\gamma^2} \left(\ln \left(2\gamma \right) - \frac{1}{3} \right) dt}_{\text{bremstrahlung}}$$

UC San Diego

Example of 10 MeV orbits in C-Mod

At γ=20 (about 10 MeV), electron drift displacement is ~ few cm. Displacements > perturbation width can average, appearing well confined, as "red" electron C-MOO UC San Diego

"Prompt-loss" of REs during TQ is major suspect for shotto-shot non-reliability of RE plateau production

• Hard X-Ray scintillators indicate prompt loss of REs just before 2002 ms.

• Soft X-Ray measurements with better poloidal resolution indicate prompt loss location is outer divertor strike point.

NATIONAL FUSION FACILITY SAN DIEGO

NIMROD modeling of Ar pellet shots shows prompt loss of REs during TQ

25

20

15

Most of the initial RE testpopulation is lost during a brief interval, excluding those in regions where good flux surfaces or large islands remain

AL FUSION FACILITY

NIMROD predictions of prompt-loss variation correlate with DIII-D observation of RE plateau currents

 \bullet In DIII-D, time between destruction and re-healing of flux surfaces ($\tau_{\rm MHD}$) is \sim few tenths of a ms

- \bullet Typical confinement time for REs when fields become stochastic (τ_{RE}) is also \sim few tenths of a ms
- These times do not necessarily scale together (simulations suggest $\tau_{RE} \propto R^3$, whereas $\tau_{MHD} \propto R$).

Can we count on significant fluctuation induced losses in ITER?

It's probably not a good bet

At time of maximum MHD fluctuations, stochasticity does not extend to the edge in ITER

- Runaway electron orbit calculations during for pellet and gas injection simulations reproduce prompt-loss seen during TQ
- NIMROD predicts shot-to-shot variation in prompt-loss that is (in most cases) consistent with shot-to-shot RE current variation in DIII-D
- Simulations show better RE confinement in larger devices (for diverted plasmas)
- There is no good reason to believe that MHD deconfinement will be an effective strategy for RE mitigation in ITER

Conclusions

Part 1. Radiative heat loads during a mitigated TQ: Toroidal (and poloidal) radiation peaking

→ Spatial symmetry of radiated power is not just a function of the impurity distribution. MHD (especially n=1) plays an important role. More data with multiple jets (and better asymmetry measurements) are needed.

Part 2. Runaway electron confinement during a mitigated TQ

→ Evidence suggests that deconfinement by MHD fluctuations will not be an effective strategy for ITER. (Of course applied perturbations at *some* level of external current could work). Other possibilities include collisional suppression (if compatible with CQ requirements), or control and dissipation of existing RE beam.

EXTRA SLIDES

Mode phase appears fairly stubborn in the simulations, but applied fields do affect growth rate

Applied n=1 vacuum fields 0.5 z (m -0.5 1 1.5 2 R (m)

External n=1 perturbations have the same phase in two simulations while the location of the source is moved 180°. Mode amplitude and time of saturation is affected, but ...

Phase of unstable 1/1 mode is not ultimately affected by applied fields

Upcoming DIII-D experiment (Next week). Hope to lock mode to n=1 I-coil fields

- Experiment will apply n=1 fields with I-coils prior to MGI. Phase of applied fields will be varied from shot-to-shot
- If we really can force the mode to take a particular phase (despite simulations results), significant variations in locally measure radiated power may be observed.
- Even if mode phase does not change, simulations suggest some effect should be observed.

Very crude synthetic diagnostic

UC San J

DIII-D produces post-CQ RE current plateaus with moderate reliability

Rapid shutdown by Ar pellet effective at producing REs in DIII-D

High Z material (Ar) in core → RE seed

RE plateaus of up to 500 kA observed

RE plateaus reliably produced for limited plasma shapes– lower reliability for diverted plasma shapes

