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AVDE disruptions
M3D and Resistive Walls

Outside the outer wall the magnetic
field is solved with GRIN, using Green’s
functions. Presently developing GRIN
to have multiple walls.

• The plasma and blanket are bounded
by thin resistive walls of thickness δwall,
resistivity ηwall (different for each wall,
and ηwall can be spatially varying.)
• Normal component of magnetic field
Bn is continuous at walls.
• The normal magnetic field on the
walls is time advanced with

∂Bn

∂t
= −n̂ · ∇ × (ηwallJwall)

τwall =
bδwall

ηwall
where b is a wall radius
• In the following, only one resistive
wall is assumed, the first wall.
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Wall Force

The current in the walls is given by the jump in the components of B tangential to the
wall,

Jw = ∇×B ≈
n̂

δ
×

[

B(+) −B(−)
]

.

where (+) is the outside and (−) is the inside of each wall.

The wall force is given by

F = δ

∫

dφ

∫

dlR(Jw ×Bw). (1)

Of particular importance is the horizontal force, Fx = x̂ · F̂ where x̂ = R̂ cosφ −
φ̂ sinφ. To get a nonzero Fx, there must be an (m,n) = (1,1) or exp(iθ − iφ)
perturbation of the wall current, from (Jw ×Bw · n̂)(n̂ · R̂)(R̂ · x̂) ∼ cos(θ) cos(φ).

In the simulations, F is normalized in units of Fdim = 2πR0LwB2
0/µ0, where Lw =

∫

dl is the wall circumference.
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AVDE disruption time scales

There are 3 time scales in AVDE (asymmetric vertical displacement event) disruptions

• τwall – resistive wall penetration time, VDE growth time. The VDE scrapes off
magnetic flux, causing q at the last closed flux surface to drop to q ≈ 2, causing
the plasma to become ideal MHD unstable.

• γ−1 – growth time of n = 1 modes, predominantly (2,1), (1,1). The modes
cause the magnetic field to become stochastic, producing the thermal quench
(TQ). Hence τTQ ≈ γ−1 ≈ 102τA.

• τhalo – the halo resistive (L/R) time. The TQ cools the plasma to the halo
temperature, and the plasma resistively decays in time τhalo, or the current
is carried into the wall by the VDE, causing the current quench (CQ). τCQ =
min(τhalo, τwall)

The plasma S is almost irrelevant, as long as it is large enough so that resistive mode
growth rates are sufficiently slow.
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VDE equilibrium

An initially VDE unstable ITER equilibrium, FEAT15MA, was evolved in 2D with M3D
until q ≈ 2 at the last closed flux surface.
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(a) The poloidal magnetic flux
ψ is shown during a VDE.

(b) q profiles corresponding the
initial state and (a). The verti-
cal lines are drawn at the last
closed flux surface.
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Stability
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(a) The plasma is unstable to n = 1 modes. As the VDE displacement increases,
q drops and the predominantly (m,n) = (2,1) mode growth rate increases. (b)
Perturbed pressure in a nonlinear evolution. The mode structure is predominantly
(m,n) = (2,1).
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Fx(ξV DE)

VDEs were evolved to different displacements, and plasma profiles changed to model
MGI mitigation: toroidal current and pressure were set to zero outside q = 2 surface,
but toroidal total current and pressure kept constant.
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Force Fx as a function of VDE
displacement ξV DE. The points
on the solid line are from sim-
ulations. This shows Fx ≈
c1ξV DE + c2. Mitigation of Fx
is greatest when ξV DE = 0.

Sideways force depends on plasma displace-
ment

ξ =
∑

mn

ξmn(t)fmn(r) exp(imθ − inφ)

Fx produced by exp(iθ − iφ) displacement,
from ξ11 and ξ10ξ21, where ξV DE = ξ10.

Fx = c21
ξV DE

b

ξ21

a
+ c11

ξ11

a
(2)

[Strauss et al. 2013], where a = plasma ra-
dius, b = wall radius (circular cross section
model), q0 = q plasma

cm1 =
(a

b

)m
(

a

q0R

)2
γm1τwall(1− q0)

2m+ (γm1τwall)[1− (a/b)2m]

For γτwall ≫ 1, c11, c21 → constant.
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Fx(γτwall) scaling
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Force Fx as a function of τwall/τA.

Here the plasma is evolved from small
VDE and n = 1 initial perturbations.
The asymmetric wall force Fx is maxi-
mum when γτwall ∼ 1.

Note that γ ≈ 0.01τ−1
A .

Model the mode and VDE amplitudes assuming exponential growth and decay. The
α terms are initial amplitudes at t = 0.

ξ21/a = sech(γt− α21), ξVDE/b = sech(t/τw − αVDE)

From (2) Fx(t) is maximum when ∂(ξ21ξV DE)/∂t = 0.

Fx ∝ c21ξ
max
V DEξ

max
21 sech2 ((γτwαVDE − α21)/(1 + γτw)) + bc11ξ

max
11

Peak value of Fx(γτw) occurs for γτw = α21/αV DE ∼ 1, which depends on initial
conditions. For γτwall ≫ 1, there is a mitigating effect: Fmin

x /Fmax
x ≈ 0.1 ∼ ξ11/ξ21.

In dimensional units Fmax
x ≈ 60 MN, the maximum tolerable by ITER.
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DOE milestone: Time history of disruption
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Time history of a DOE milestone (in progress) disruption simulation. Parameters:
S = 106, τwall = 104τA, τhalo = 103τA. Shown are normalized total current I, nor-
malized total pressure p , and TPF . Also shown is Fx, the dimensionless sideways
wall force multiplied by 104. Fx ≈ 3% of the maximum Fx that can be tolerated by
ITER. The value γτwall is the rightmost point on the previous graph of Fx(γτA). The
oscillations of Fx are caused by toroidal rotation.

Model of external inductance (current controller) can give more time more separation
of TQ and CQ.
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Rotation in disruptions and ELMs

It was observed that disruptions were accompanied by toroidal rotation [Gerhardt
2012,Granetz 1996, Gerasimov 2010].

There is a concern that this rotation may occur during ITER disruptions, causing a
resonance between rotating toroidal perturbations and the resonant frequencies of
the vacuum vessel.

In an MHD model, disruptions (loss of equilibrium) can produce rotation.

Both toroidal and poloidal rotation are produced.

Toroidal rotation is sheared, peak value can be 10× larger than average value. (MHD
zonal flow).

MHD activity may produce intrinsic toroidal rotation [Rice 2007].
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Conservation of toroidal angular momentum

∂

∂t
Lφ =

∮

(RBφBn − ρRvφvn)Rdldφ (3)

where the total toroidal angular momentum is

Lφ =

∫

ρR2vφdRdZdφ (4)

and the integral in (3) is over the boundary. Using the M3D magnetic field represen-
tation,

B = ∇ψ ×∇φ+
1

R
∇⊥F +G∇φ (5)

in (3) yields

∂

∂t
Lφ =

∮

G
∂ψ

∂l
dldφ (6)

where ∂F/∂n = 0 at the boundary. We have assumed that vφ = 0 at the boundary,
but not vn = 0 at the boundary, although we have done so in simulations with M3D.

If G = G(ψ), then toroidal angular momentum Lφ is conserved. This is the case
in an equilibrium satisfying the Grad - Shafranov equation. If the plasma is not in
equilibrium, such as during a disruption or ELM, then net flow can be generated.
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VDE - kink disruption

(a) (b) (c)

(a) The poloidal magnetic flux ψ during a disruption at toroidal angle φ = 0, time t =
377τA. Parameters: S = 106, τw = 103τA, τhalo = 103τA. (b) Toroidal magnetic
flux G at the same toroidal angle and the same time. The contours of G and ψ are
different, indicating that toroidal angular momentum can be generated. (c) Toroidal
velocity vφ at the same toroidal angle and time. The flow is sheared; it is zero on axis
and small near the wall.
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VDE - kink disruption
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(a) slice plot of vφ(R,0,0) at time t = 377τA showing sheared structure. (b)
Toroidally varying part of ψ at the same time. (c) Perturbed toroidal magnetic flux
G at the same toroidal angle and the same time. The contours of G and ψ are differ-
ent, indicating that toroidal angular momentum can be generated.
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Time history of disruption
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Time history of the simulation shown in previous figures. Shown are normalized
total current I, total pressure P , Vφ, and Fx. Vφ = Lφ/

∫

ρR2dRdZdφ, multiplied

by 1000, so that Vφ ≈ 0.004vA. Fx, the sideways wall force, is multiplied by 104.
The maximum Fx ≈ 3% of the maximum force tolerable by ITER. The peak rotation
coincides with the peak Fx. The rotation is counter - current: VφIφ/B < 0.
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Time history of sideways force
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(a) Time history Fx, and the projections of the force in the x̂ and ŷ directions, Fx =
F · x̂, and Fy = F · ŷ. It can be seen that the direction of sideways force is rotating,
with period comparable to the time the force is large. (b) same data, with Fxy(Fxx).
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Time history of disruption 2
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Time history of a simulation similar to the previous figures. In this case an external
circuit model of the toroidal electric field sustains the current for t ≤ τCQ. The toroidal
rotation is also sustained.
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Numerical accuracy of toroidal angular momentum conservation

The dominant part of the toroidal force balance is
∫

ρR2∂vφ

∂t
dV =

∫

∇G×∇ψ · φ̂dV + . . . (7)

The numerical implementation of (3) is in conservation form, because
∫

Ω

∇G×∇ψ · φ̂dRdZ =

∮

∂Ω

Gdψ (8)

for each element Ω.
Boundary Conditions allow L̇φ 6= 0

ψ and G satisfy resistive wall boundary conditions

∂ψ

∂t
=
ηwall

δ
(ψ′

vacuum − ψ′
plasma) (9)

ηG′ =
ηwall

δ
(Gvacuum −Gplasma) (10)

ψ has Dirichlet boundary condition, but G has Neumann which permits ∂G/∂t 6= 0
on the boundary.



Analytic model of rotation source

To express L̇φ in terms of magnetic perturbations, the magnetic fluxes ψ and G can
be split into equilibrium and toroidally varying parts, ψ = ψ0+ψ1, G = G0+G1+G2.
For simplicity we assume circular equilibrium cross sections, dl = rdθ. The perturbed
magnetic fluxes ψ,G approximately satisfy [Strauss 1977],

ψ1 = B0 · ∇ξ (11)

G1 = −∇G0 ×∇ξ · φ̂ (12)

G2 = −∇G1 ×∇ξ · φ̂ (13)

where ξ is the perturbation displacement potential, given by

∫ t

vdt′ = ∇ξ × φ̂ (14)

Then G1 = −(G′
0/r)∂ξ/∂θ. The change of G in next order is

G2 ≈
G′

0

r2
∂

∂r

(

∂ξ

∂θ

)2

(15)
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The plasma is displaced by a VDE with (m,n) = (1,0), ψ0 = ψ0(r − ξ10 sin θ) ≈
−ξ10 sin θψ′

0, ξ = ξ(r − ξ10 sin θ, θ, φ) ≈ −ξ10 sin θξ′. This gives the result , with
ψ1 ≈ 0,

L̇φ ≈

∮

∂ψ0

∂θ
G2dθdφ ≈

G′
0Bξ

3
10

2qrR

∂

∂r

∮
(

∂ sin θξ′

∂θ

)2

cos θdθdφ. (16)

We must have at least two modes (m,n), (m+ 1, n) contributing to ξ, which beat
together to give a cos θ term. It is useful to express (16) using (5) in terms of Bθ,

ξ =
∑

m

ξmn sin(mθ − nφ), Bθ =
∑

mn

Bθmn cos(m− nq) (17)

with

Bθmn ≈ −
B

R
(
m

q
− n)ξ′mn (18)

which gives

dLφ

dt
=
π2

2
rqG′

0ξ
3
10

R

B

∑

mn

∂

∂r

[

m(m+1)BθmnBθ(m+1)n

(m− nq)(m+1− nq)

]

(19)
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Rotation of Fx

We noted that Fx depends on the displacements ξ11, ξ21:

Fx = c21
ξV DE

b

ξ21

a
+ c11

ξ11

a

where c11, c21 depend on geometry, q, and γτwall. The displacements rotate with the
plasma toroidal velocity:

ξ11 = ξ11(r, θ, φ− vφ(r)t/R)

ξ21 = ξ21(r, θ, φ− vφ(r)t/R),

which causes Fx to rotate. Note that ξ11, ξ21 are localized in the plasma, where vφ(r)
is larger than at the wall, and that ξ11, ξ21 are localized at different radii, causing
possible beating and rotation reversal.
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Rotation in ELMs

(a) (b)

High resolution ELM simulation of DIII-D shot 126006. (a) two density isosurfaces,
with velocity streamlines. Several of the streamlines follow the density corrugations,
which in turn are parallel to the magnetic field. Near the edge the streamlines follow
the ELM fingers. (b) contour plot of vφ, has an approximately zonal structure, with
different direction in the center and the edge. There is also a region of reversed vφ at
the separatrix in the bottom of the figure.
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ELM simulation

(a) (b) (c) (d)

ELM simulation of DIII-D 126006, S = 105, τwall = 100τA. (a) The poloidal magnetic
flux ψ at toroidal angle φ = 0, time t = 154τA. (b) perturbation of ψ. (c) toroidal
magnetic flux G (d) Toroidally averaged toroidal velocity.
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Time history of ELM
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Time history of the simulation shown in previous figure. Shown are Vφ and V⊥. The
maximum value of Vφ = 0.05vA. The results are insensitive to τwall/τA.
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Intrinsic toroidal rotation

Scaling law of rotational Alfvén Mach number Mφ ∝ βN has been obtained where
Mφ = vφ/vA. “ ... scalings of intrinsic rotation with normalized gyro - radius or
collisionality show no correlation. Whether this suggests the predominant role of
MHD phenomena such as ballooning transport over turbulent processes in driving
the rotation remains an open question.” [Rice 2007] This was a comparative study of
intrinsic toroidal rotation in H mode plasmas, in several experiments.

In a high β large aspect ratio approximation [Strauss 1977], G0 = −Rp/B, so a
β scaling emerges naturally. This tends to be a better approximation in an H mode
pedestal, where there is a relatively large pressure gradient. The VDE could be
replaced by vertical asymmetry, and the 3D perturbations could be ballooning modes
which occur in ELMs. Writing (19) in terms of the normalized time 1/(γτA), and
dividing both sides by ργτA gives the scaling

Mφ ≈
π

2γτA

ξ310
r2R

m2B2
θmn

B2
βN , (20)

where βN = ǫpR/(BIφ).

Taking γτA = 0.01 as above, Bθ/B = 0.01, ξ10/r = 0.5, m = 3, and βN = 3
yields

Mφ ≈ 1.6× 10−2 (21)

consistent with the simulations above and with the ITER prediction of [Rice 2007].
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Halo current

(a)

(b)

Toroidal variation of toroidal current
It was found in JET that during disruptions, the
toroidal current varied with toroidal angle. It
was found that ∆Iφ/Iφ ≈ 0.08, where ∆Iφ
is the amplitude of the n = 1 variation.
(a) Current Iφ(φ, t) measured in quadrants of
JET, showing n = 1 toroidal variation.
(b) Toroidal current variation ∆Iφ vs. ∆MIZ,
vertical displacement of the current.

L. E. Zakharov, Phys. Plasmas 15 062507
(2008).

S. N. Gerasimov et al., Proc. of EPS 37th
Conference on Plasma Physics (2010); S. N.
Gerasimov ITPA meeting, Abingdon (2013).

These results can be explained in terms of 3D
halo current.
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Three dimensional halo current

The standard two dimensional halo current is

Ihalo =
1

2

∮

|Jn|Rdl (22)

The three dimensional halo current is defined by

Ihalo3D =

∮

JnRdl. (23)

where the integral is along the plasma facing surface of the wall. Using ∇ · J = 0,
and integrating over a poloidal cross section, yields the

dIφ

dφ
= −Ihalo3D. (24)

We showed previously [Strauss et al. 2010] that

∆Iφ =
ξvde

a2
∆MIZ (25)

where MIZ =
∫

ZJφdRdZ, as in the previous figure, and

∆MIZ = Iφ
a2

b

(2 + γ11τwall)(1− qa)

2b/a+ γ11τwall(b/a− a/b)

ξ11

a
(26)

From (25), the slope of the curves in the previous figure is positive (negative) for an
upward (downward) VDE.
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Halo current fraction

The halo current fraction is the ratio of halo current to toroidal plasma current, defined
as

HF =
2π < Ihalo >

< Iφ >
. (27)

where the bracket denotes an average over the toroidal angle. The factor 2π appears
in (27) because the total halo current

∫

Ihalodφ is needed, not the toroidal average.

The magnitude of the variation of the toroidal current can be expressed

∆Iφ

Iφ
=
Ihalo3D−max

< Iφ >
=

1

2π
Chalo × TPF ×HF (28)

where

Chalo =
Ihalo3D−max

Ihalo−max
(29)

and the toroidal peaking factor is

TPF =
Ihalo−max

< Ihalo >
. (30)
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A time history plot which continued from
the VDE equilibrium shown previously with
3D perturbations, S = 106, τwall =
104τA, shows

TPF3D = 1+ ChaloTPF. (31)

which gives Chalo ≤ 0.5, when TPF3D ≈
1.6 is a maximum, and TPF ≈ 1.2. Also
plotted is 45∆Iφ/Iφ + 1, well correlated
with TPF3D, which implies ∆Iφ/Iφ ≈
0.02. This agrees with (28), taking Chalo =
0.5,TPF = 1.2,HF = 0.2.

Assuming γ11τwall ≫ 1, we find [Strauss
et al. 2013] Chalo ≤ π/2, which gives

∆Iφ

Iφ
≤

1

4
× TPF ×HF ≤

3

16
(32)

where TPF × HF ≤ 0.75, from experi-
mental data.
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velocity boundary conditions

• Dirichlet: vn = 0 – rigid wall
• Neumann: ∂vn/∂n = 0 – ab-

sorbing wall
• Robbins ∂vn/∂n + αvn = 0 –

compromise

(a) Fx(γwall) for Neumann and Dirich-
let velocity boundary conditions.

(b) Fx(α) with τwall = 20τA. Neumann
for α = 0, Dirichlet for α→ ∞.

Fx( Neumann ) ≈ 2−3×Fx (Dirichlet)
for γτwall ≫ 1.

Plasma is absorbed in about 10nm,
much less than the resolution of MHD
codes. Robbins with α ≫ 1 models
short wall penetration depth and is ap-
proximately Dirichlet.
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v⊥ vs. v‖ boundary conditions

The velocity is approximately

v ≈
∇Φ×B

B2
+ v‖

B

B
(33)

Dirichlet: Φ = 0 at boundary

Neumann: ∂Φ/∂n = 0 at boundary

On the outside of the wall, no vacuum electric field: Φ = 0,

On the plasma side of the wall, must have Φ ≈ 0, or there will be very large electric
field in the wall (in the 10 nm penetrated by plasma):

Ewall/Eplasma ≈ (∆Φwall/10nm)/(∆Φplasma/1m) = 108, if ∆Φwall ∼ ∆Φplasma.

The parallel velocity v‖ is not constrained: it can cause plasma to penetrate the wall.
But it does not affect the magnetic field, hence does not affect halo current or wall
force. It is small compared to v⊥,

v‖/v⊥ ∼ β1/2 ≪ 1.

v‖ ∼ hydrodynamic flow in a pipe, v⊥ ∼ salt water.
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Notes on other disruption simulation approaches

Other suggested computational approaches do not include TQ, CQ, toroidal flow.

• 3D equilbrium code

– TQ can not occur

∗ involves breakup of flux surfaces and loss of equilibrium

– no vφ generation in equilibrium

• ideal MHD free boundary code

– Plasma resistivity (for reconnection) is needed for TQ

– Halo resistivity is needed for CQ
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Conclusions

• AVDE disruptions have large variation in asymmetric wall force is Fx.

– Asymmetric wall force is Fx maximum for γτwall ∼ 1.

– Fx is smaller for γτhalo ≫ 1, a mitigating effect

– MGI mitigation of Fx depends offset linearly on VDE displacement.

• M3D simulation model can give TQ, CQ.

• Disruptions and ELMs can drive toroidal and poloidal rotation.

– Toroidal rotation is sheared, MHD zonal flow.

– toroidal rotation sustained for t ≈ τCQ.

– ELM activity may produce intrinsic toroidal rotation, with MA ∼ 10−2.

• 3D halo current produces toroidal variation of toroidal current. Toroidal current
variation is limited to 3/16 of the total toroidal current.

• vn = 0 is a reasonable boundary condition.
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