Challenges and R&D needs for combined thermal and magnetic energy mitigation in ITER

Prepared and presented by

John Wesley • General Atomics

Theory and Simulation of Disruptions Princeton Plasma Physics Laboratory 17-19 July 2013

20-mm SPI pellet (same scale)

Tore Supra RDI cartridge (~ same scale)

Disclaimer: Personal opinions, not representative of positions of IO, USDOE, USIPO, USBPO, GA or DIII-D

ITER (not to same scale)

Effective disruption + RE mitigation are essential for ITER

• DMS has 5 critical functions:

limit W_{th} deposit on divertor and first wall surfaces
 prevent 'hot plasma VDEs' and FW energy deposit
 limit halo current forces in blanket/shield modules
 control eddy current forces in B/S modules
 control and dissipate runaway electron currents

- MGI (massive gas injection) identified as primary approach; MPI (massive pellet injection) as alternate
- ITER current and energy introduce R&D needs
 - Control thermal and magnetic energy radiation
 - Avoid and mitigate runaway electrons
 - Provide adaptive control, with high reliability and nuclear compatibility
- USIPO to provide DMS: physics + technology R&D, experiments and modeling critical for meeting 2016 FDR milestone

Three critical issues constrain the disruption mitigation strategy proposed for ITER

1) Structural capabilities of the blanket-shield module attachments + VDE avoidance mandate control of the current decay rate

 \Rightarrow 50-150 ms I_p decay; \leq 35 ms decay 'not allowable'

2) Rapid radiation of 350 MJ of plasma thermal energy can melt the surface of the beryllium first wall

 $\Rightarrow t_{rad} > 0.8 \text{ ms}^*(\text{PF})^2$

- 3) MGI or MPI strategies that satisfy requirements 1) and 2) likely to produce high levels of after-mitigation *runaway electron current*
 - ⇒ Must have *independent* RE mitigation capability

Multiple challenges, constraints and interactions for DMS concept selection and deployment

This talk: focus on combined thermal and magnetic energy mitigation (aka 'basic' disruption mitigation)

- Energies:
 - W_{th} = 350 MJ (DT); = ~50-100 MJ (H₂ or He)
 - $W_{mag} = \sim 650 \text{ MJ} \text{ (in-vessel, for 15 MA)}$
- Three sequential requirements:
 - Protect the [tungsten!] divertor: $W_{div} \leq 30$ MJ (ideally <<)
 - Deposit radiated energy (~1100 MJ) benignly (no Be melt)
 - Ensure $50 \le t_{CQ} \le 150$ ms (limit B/S attachment loads)
- DMS will comprise the primary 'defense' against disruption damage; must be safe, effective, reliable and controllable
- Hardware options: gas or mass injection (VG at end)
- What options will be able to meet requirements?
- What do we need to know to select and qualify DMS candidates?

Narrow range of current quench time (t_{CQ}) is allowed

- $F_{over}(B-S) \propto dI_p/dt$ (actually dB_p/dt)
- $F_{halo}(B-S) \propto \sim (dI_p/dt)^{-1}$ (from VDE)
- P_{VV} independent of dI_p/dt
 - \Rightarrow 50 \leq $t_{CQ} \leq$ 150 ms
- 'Natural' disruptions (with Be) →
 t_{CQ} ≥ 150 ms, with major vertical instability + halo currents
- Number of ≤ 35-ms CQs = 'a few' (lifetime)
- CQ physics basis = t_{CQ}/S; set by [radiating] impurity content

⇒ Too-fast or too-slow disruptions and excessive or insufficient MGI/MPI "shall not occur"

MGI results demonstrate CQ 'control' success, albeit with residual variances + sensitivities to target attributes

S = poloidal cross-section area; $j_p = I_p/S$

• ITER: Will MGI/MPI that satisfies TE mitigation requirements (later VGs) also meet CQ control requirement?

Most DIII-D CQ data near/below ITER minimum; recent 'ITER-like' low-Q examples show unexpected variances and Q scalings

DIII-D CQ data consistent with simple 0-D radiation model; native carbon dominates low-Z injection cases

Application of DIII-D low-Z experience to ITER (with Be FW) will require model

Radiation model T_e (at CQi) (eV)

'ITER-like' MGI or MPI for $t_{CQ}/S \sim 5 \text{ ms/m}^2$ requires relatively small quantities of neon or argon

	DIII-D	JET	ITER
V(m ³)	18	85	832
N(neon)	1.8e21	8.6e21	8.3e22
Q _{pellet} (Torr-liter) (@ 100% assimilation)	50 (0.06 g)	240 (0.30 g)	2400 (2.9 g)
Gas input @ 15% assimilation			
Q _{inj} (Torr-liter)	340	1620	15700
Q _{inj} (bar-liter)	0.45	2.13	20.6
Q _{inj} (kPa-m³)	0.045	0.21	2.06

Argon quantity = $\sim 1/3$ neon quantity

ITER first wall must accommodate 350 MJ thermal energy + ~700 MJ magnetic energy

- $W_{\rm th}/A_{\rm FW} \simeq 0.5 \, \rm MJ/m^2$ (uniform)
- For 'square' $P_{rad}(t)$, Be melt at ~20 MJ m⁻²s^{-0.5}

 \Rightarrow $t_{rad} \ge 0.8 \text{ ms} * (PF)^2$

• Experiment: *W*_{th} radiation peaking factors for MGI

 $1.1 \le PF \le 5$ (poloidal + toroidal)

- Impurity plume and radiation source dynamics ⇒ need for 3D+t diagnosis
- NIMROD modeling [Izzo] suggests MHD may set irreducible toroidal peaking factor
- C-Mod 2-valve expts [Granetz et al] show toroidally-symmetric MGI does not yield toroidally symmetric TE radiation
- DIII-D 2-valve experiments coming; 1-valve MGI and pellet data suggest strong role of 'MHD mixing' in TE radiation attributes

MGI experiments show multiple time scales and control challenges for thermal and magnetic energy radiation

- JET: ~1-ms TE radiation pulse from 'MHD mixing' of edgedeposited impurities into core
- Preceded by 5-ms 'cooling phase' radiation; followed by 10ms CQ radiation
- Mixing onset delay decreases with increasing injection, but duration doesn't change much
- ITER: Can we 'control' TQ onset, radiation duration + uniformity?
- For ITER, we need a validated model for MHD mixing, t_{rad} and PF(t), for both W_{th} and W_{mag}

JET: data from M. Lehnen et al, 2010 IAEA

DIII-D MGI and pellet injection examples show ubiquitous presence of MHD mixing + correlation with TE radiation pulse

- #129706, ArMGI shows peak radiation correlates with onset and decay of a short-lived n=1 kink instability (LaHaye)
- Similar 'MHD mixing' signatures seen in a variety of MGI, SPI and ArKP examples. Higher-frequency equivalents seen for both high-q and low-q disruptions
- Relevant to validation of models required to extrapolate radiation duration and symmetry to the ITER
- Forthcoming DIII-D MGI, SPI and killer pellet experiments + 3D magnetics can yield more definitive MHD data
- Future upgrades to DIII-D fast bolometry (DISRAD) systems needed for better quantification of rad symmetry effects

#129706 Ar MGI shows radiation asymmetries, ~250 μ s FWHM, ~80 μ s time offset of peak radiation (radiation data by Hollmann)

Mixing instability 'features' align with radiation peak; higherfrequency precursor + very-high-frequency burst at peak

Low-Q Ar (M-II, 1 valve) #150468 with IWL/ECH target yields two reconnections (4-5 kHz), the first sans significant radiation

Very-low-Q Ar MGI #149723 shows multiple reconnections, before and after main CQ, many with detectable radiation

D₂ SPI example (#150171) similar, but with gradually-growing precursor + sustained + episodic radiation pulse

Database for DIII-D TE radiation duration and symmetry lacking; duration estimators suggest low-Z versus high-Z differences

Thermal energy loss time estimator = $\Delta t(I_p \text{spike} \uparrow \text{ to } I_p \text{spike} \text{max})$

JET MGI data may also show presence of multiple reconnections (high time resolution important to showing effects in DIII-D)

- 1-ms TE radiation pulse from 'MHD mixing' of edge-deposited impurities into core
- Preceded by 5-ms 'cooling phase' radiation; followed by 10ms CQ radiation
- Mixing onset delay decreases with increasing injection, but duration doesn't change much
- ITER: Can we 'control' TQ onset, radiation duration + uniformity?
- For FDR, we need a validated model for MHD mixing, *t*_{rad} and PF(*t*), for both *W*_{th} and *W*_{mag}

JET: data from M. Lehnen et al, 2010 IAEA

Variance and 'Q-reversal' in low-Q argon MGI 'explained' by variance/decrease in assimilation; due to changes in MHD mixing?

A challenge for integrated modeling!

Disruption mitigation for ITER is predicated on pre-emptive gas and/or mass injection; theory/simulation support urgently needed

- Physics and hardware elements for 'basic' disruption mitigation in ITER have already been identified and have [more-or-less] been demonstrated (hardware in next VG)
- Feasibility of sequential integration and adequacy of 'control' remain as significant DMS concept selection issues
- Integrated '3-D' models that combine impurity delivery and transport, MHD dynamics and subsequent radiative dissipation of thermal and magnetic energies are needed
- Experiments with 'ITER-like' DM are on the 'critical path'; time for experiment ↔ model validation is very short
- Final development and validation will likely have to take place in ITER itself: DMS qualification will be an experiment!

ITER-scale injection technologies in development; needed now to advance present-day experiments and model validations

- 'ITER-size' fast-valve developed for JET [Finken NF<u>51</u> (2011)]; awaiting test
- Similar 'hardened' valve(s) suitable for ITER TE+CQ mitigation or plateau RE MGI
- Active quantity and flow rate control required
- 14-mm D₂ SPI (shatter pellet injection) system tested in D-III (~1/3 $m_{\rm RB}$)
- 20-mm SPI proposed for ITER:
 - ~1 neon pellet for TE+CQ mitigation
 - ~30 D₂ pellets for RB-density mitigation
 - ~ 3 neon pellets for plateau RE mitigation
- 20-mm RDI cartridges tested in Tore Supra
- Common issues: engineering feasibility, reliability + how to implement flexibility + 'control' for ITER

Tore Supra RDI cartridge (~ same scale)

An issue-driven framework identifies R&D needs for the DMS Final Design Review (2016)

We are here

	2012	20 <mark>1</mark> 3	2014	2015	2016				
1. TE mitigation and disposition Limit TE to DIV and FW Disposition of TE (control + diagnostics) Modelling + validation					1.1 TE mitigation? 1.2 TE disposition 1.3 Hand off to CQ	$\left] \right]$	- DM so	lution	
2. Current quench control Limit VDEs and associated EM loads CQ control and optimization					2.1 VDE control? 2.2 CQ control? 2.3 RE avoidance or generation?	J	RE solution(s)	ITER DMS FDR 1. Concept selection(s)	
3. RE avoidance Density for collisional mitigation (<i>n</i> CH-RB) Methods to realize/sustain superhigh densities Integrated modeling and other issues (eg., radiation opacity, pellets + superthermal)					3.1 Avoidance possible? 3.2 Within CQ allowables? 3.3 Within exhaust allowables?				 2. Access and facility req'mnts 3. Open R&D and test req'mnts 3.1 Physics 3.2 Technology
4. RE physics and dissipation Avalanche, plateau and end-phase physics (Ecrit, other losses, limiter interaction) Diagnostics and Modeling (F-P, RE EQ, MHD,) Rapid dissipation by MGI/MPI					4.1 EQ control possible? 4.2 Benign dissipation possible? 4.3 Sensitivity to /RE level 4.4 Normal + off-normal sequences	s		4. Fab and deployment plan 5. Commission + operations plar 6. Adequacy + risk assessment	
5. Technology, reliability + control issues Access, environment and materials Present reliability and controllability RT control, system integration and 'flexibility'					5.1 Technologies available? 5.2 Needs for further R&D 5.3 Emerging concept(s)?]_			

- Assimilation + radiation duration/symmetry/control with multi-valve MGI
- Achieving super-high densities via D₂ SPI and/or D₂ RDI
- RE + *E*_{crit} physics + rapid dissipation + 'ITER-like' control
- Integrated model development, validation and application

Disruption mitigation for ITER must sail between Scylla and Charybdis; are you ready to jump in the water to help?

SHARKS; Dogs of Scylla. BRITANNIA between SCYLLA & CHARYBDIS. Jig the Blue strong by Blue strong

