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Effective disruption + RE mitigation are essential for ITER

• DMS has 5 critical functions:
  ❶ limit Wth deposit on divertor and first wall surfaces
  ❷ prevent ‘hot plasma VDEs’  and FW energy deposit
  ❸ limit halo current forces in blanket/shield modules
  ❹ control eddy current forces in B/S modules

  ➎ control and dissipate runaway electron currents

•  MGI (massive gas injection) identified as
   primary approach; MPI (massive pellet
   injection) as alternate

•  ITER current and energy introduce R&D needs
   — Control thermal and magnetic energy radiation

   — Avoid and mitigate runaway electrons

   — Provide adaptive control, with high reliability
        and nuclear compatibility

• USIPO to provide DMS: physics + technology
  R&D, experiments and modeling critical for
  meeting 2016 FDR milestone
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Three critical issues constrain the disruption mitigation
strategy proposed for ITER

1) Structural capabilities of the blanket-shield module attachments +
   VDE avoidance mandate control of the current decay rate

           ⇒  50-150 ms Ip decay; ≤ 35 ms decay ‘not allowable’

2) Rapid radiation of 350 MJ of plasma thermal energy can melt the
  surface of the beryllium first wall

       ⇒ trad > 0.8 ms*(PF)2

 3) MGI or MPI strategies that satisfy requirements 1) and 2) likely to
   produce high levels of after-mitigation runaway electron current

           ⇒ Must have independent RE mitigation capability

  Multiple challenges, constraints and interactions for
  DMS concept selection and deployment



This talk: focus on combined thermal and magnetic
energy mitigation (aka ‘basic’ disruption mitigation)

• Energies:

— Wth = 350 MJ (DT); = ~50-100 MJ (H2 or He)

— Wmag = ~650 MJ (in-vessel, for 15 MA)

• Three sequential requirements:

—  Protect the [tungsten!] divertor: Wdiv ≤ 30 MJ (ideally <<)

 —  Deposit radiated energy (~1100 MJ) benignly (no Be melt)

—  Ensure 50 ≤ tCQ ≤ 150 ms (limit B/S attachment loads)

• DMS will comprise the primary ‘defense’ against disruption damage;
 must be safe, effective, reliable and controllable

• Hardware options: gas or mass injection (VG at end)

• What options will be able to meet requirements?

• What do we need to know to select and qualify DMS candidates?



Narrow range of current quench time (tCQ) is allowed

• Fover(B-S)  ∝  dIp/dt (actually dBp/dt)

• Fhalo(B-S) ∝ ~(dIp/dt)-1 (from VDE)

• PVV independent of  dIp/dt

         ⇒ 50 ≤ tCQ ≤ 150 ms

• ‘Natural’ disruptions (with Be) →
tCQ ≥ 150 ms, with major vertical
instability + halo currents

•  Number of ≤ 35-ms CQs = ‘a few’
(lifetime)

•  CQ physics basis = tCQ/S; set by
[radiating] impurity content

⇒ Too-fast or too-slow disruptions and excessive
     or insufficient MGI/MPI “shall not occur”



MGI results demonstrate CQ ‘control’ success, albeit with
residual variances + sensitivities to target attributes

S = poloidal cross-section area; jp = Ip/S

• ITER: Will MGI/MPI that satisfies TE mitigation requirements
  (later VGs) also meet CQ control requirement?

DIII-D



Most DIII-D CQ data near/below ITER minimum; recent ‘ITER-like’
low-Q examples show unexpected variances and Q scalings

Variance  and ‘Q-reversal’ may be
due to MHD mixing (later VG)



DIII-D CQ data consistent with simple 0-D radiation model;
native carbon dominates low-Z injection cases

Application of DIII-D low-Z experience to
ITER (with Be FW) will require model



‘ITER-like’ MGI or MPI for tCQ/S ~5 ms/m2 requires relatively
small quantities of neon or argon

Gas input @ 15%
assimilation

2.060.210.045   Qinj (kPa-m3)

20.62.130.45   Qinj (bar-liter)

157001620340   Qinj (Torr-liter)

2400 (2.9 g)240 (0.30 g)50 (0.06 g)Qpellet(Torr-liter)
(@ 100% assimilation)

8.3e228.6e211.8e21N(neon)

8328518V(m3)

ITERJETDIII-D

Argon quantity = ~1/3 neon quantity



ITER first wall must accommodate 350 MJ thermal energy
+ ~700 MJ magnetic energy  

• Wth/AFW ≅ 0.5 MJ/m2  (uniform)

• For ‘square’ Prad(t), Be melt at ~20 MJ m-2s-0.5

            ⇒   trad  > ≅ 0.8 ms * (PF)2

• Experiment: Wth radiation peaking factors
  for MGI

            1.1 ≤ PF ≤ 5 (poloidal + toroidal)

• Impurity plume and radiation source
  dynamics ⇒ need for 3D+t diagnosis

• NIMROD modeling [Izzo] suggests MHD may
  set irreducible toroidal peaking factor

• C-Mod 2-valve expts [Granetz et al] show
  toroidally-symmetric MGI does not yield
  toroidally symmetric TE radiation

• DIII-D 2-valve experiments coming; 1-valve
  MGI and pellet data suggest strong role of
  ‘MHD mixing’ in TE radiation attributes

DIII-D MGI
imaging

 



MGI experiments show multiple time scales and control
challenges for thermal and magnetic energy radiation

• JET: ~1-ms TE radiation pulse
from ‘MHD mixing’ of edge-
deposited impurities into core

• Preceded by 5-ms ‘cooling
phase’ radiation; followed by 10-
ms CQ radiation

• Mixing onset delay decreases
with increasing injection, but
duration doesn’t change much

• ITER: Can we ‘control’ TQ onset,
radiation duration + uniformity?

• For ITER, we need a validated
model for MHD mixing, trad and
PF(t), for both Wth and Wmag

JET: data from M. Lehnen et al, 2010 IAEA



DIII-D MGI and pellet injection examples show ubiquitous
presence of MHD mixing + correlation with TE radiation pulse

• #129706, ArMGI shows peak radiation
correlates with onset and decay of a
short-lived n=1 kink instability (LaHaye)

• Similar ‘MHD mixing’ signatures seen in a
variety of MGI, SPI and ArKP examples.
Higher-frequency equivalents seen for
both high-q and low-q disruptions

• Relevant to validation of models
required to extrapolate radiation
duration and symmetry to the ITER

• Forthcoming DIII-D MGI, SPI and killer
pellet experiments + 3D magnetics can
yield more definitive MHD data

• Future upgrades to DIII-D fast bolometry
(DISRAD) systems needed for better
quantification of rad symmetry effects



#129706 Ar MGI shows radiation asymmetries, ~250 µs FWHM,
 ~80 µs time offset of peak radiation (radiation data by Hollmann)



Mixing instability ‘features’ align with radiation peak; higher-
frequency precursor + very-high-frequency burst at peak



Low-Q Ar (M-II, 1 valve) #150468 with IWL/ECH target yields two
reconnections (4-5 kHz), the first sans significant radiation



Very-low-Q Ar MGI #149723 shows multiple reconnections, before and
after main CQ, many with detectable radiation



D2 SPI example (#150171) similar, but with gradually-growing precursor  +
sustained + episodic radiation pulse



Database for DIII-D TE radiation duration and symmetry lacking;
duration estimators suggest low-Z versus high-Z differences

Thermal energy loss time estimator

     = Δt(Ipspike↑ to Ipspike,max)



JET MGI data may also show presence of multiple reconnections
(high time resolution important to showing effects in DIII-D)

• 1-ms TE radiation pulse from
‘MHD mixing’ of edge-deposited
impurities into core

• Preceded by 5-ms ‘cooling
phase’ radiation; followed by 10-
ms CQ radiation

• Mixing onset delay decreases
with increasing injection, but
duration doesn’t change much

• ITER: Can we ‘control’ TQ onset,
radiation duration + uniformity?

• For FDR, we need a validated
model for MHD mixing, trad and
PF(t), for both Wth and Wmag

JET: data from M. Lehnen et al, 2010 IAEA



Variance and ‘Q-reversal’ in low-Q argon MGI ‘explained’ by
variance/decrease in assimilation; due to changes in MHD mixing?

A challenge for integrated modeling!



Disruption mitigation for ITER is predicated on pre-emptive gas
and/or mass injection; theory/simulation support urgently needed

• Physics and hardware elements for ‘basic’ disruption
mitigation in ITER have already been identified and have
[more-or-less] been demonstrated (hardware in next VG)

• Feasibility of sequential integration and adequacy of ‘control’
remain as significant DMS concept selection issues

• Integrated ‘3-D’ models that combine impurity delivery and
transport, MHD dynamics and subsequent radiative dissipation
of thermal and magnetic energies are needed

• Experiments with ‘ITER-like’ DM are on the ‘critical path’; time
for experiment ↔ model validation is very short

• Final development and validation will likely have to take
place in ITER itself: DMS qualification will be an experiment!



ITER-scale injection technologies in development; needed now to
advance present-day experiments and model validations

JET DMV30 fast valve

• ‘ITER-size’ fast-valve developed for JET [Finken
NF51 (2011)]; awaiting test

• Similar ‘hardened’ valve(s) suitable for ITER
TE+CQ mitigation or plateau RE MGI

• Active quantity and flow rate control required

• 14-mm D2 SPI (shatter pellet injection) system
tested in D-III (~1/3 mRB)

• 20-mm SPI proposed for ITER:

   —  ~1 neon pellet for TE+CQ mitigation

   — ~30 D2 pellets for RB-density mitigation

   — ~ 3 neon pellets for plateau RE mitigation

• 20-mm RDI cartridges tested in Tore Supra

• Common issues: engineering feasibility, reliability
+ how to implement flexibility + ‘control’ for ITER



An issue-driven framework identifies R&D
needs for the DMS Final Design Review (2016)

• Assimilation + radiation duration/symmetry/control with multi-valve MGI

• Achieving super-high densities via D2 SPI and/or D2 RDI

• RE + Ecrit physics + rapid dissipation + ‘ITER-like’ control

• Integrated model development, validation and application



Disruption mitigation for ITER must sail between Scylla and
Charybdis; are you ready to jump in the water to help?


