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Motivation for EGAM

1. n=0 GAM observed in JET and interprated as energetic particle
driven GAM(EGAM) by Berk et al. (Nucl. Fusion 46, 2006)

2. GAM-like mode driven by suprathermal ion observed in DIII-D
and simulation done by Nazikian et al. (PRL 101, 2008)

3. A fluid-kinetic model constructed and numerical simulation done
for n =0 EGAM by Fu (PRL 101, 2008)
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Motivation for EGAM

Figure: Nazikian et al. PRL Figure: Global Mode (Fu PRL
101, 2008 101, 2008)



Kinetic Description of Plasma Responses

Electrostatic perturbation

» Kinetic Equation

f. . OF — _ , .
% — %% v -Vo,j = thermal e, ion and energetic ion

» Solution by integrating over equilibrium orbits
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» Quadratic form
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Kinetic Description of Plasma Responses

Treat 3 species differently!

» Fourier expansion into orbit harmonics
£ = [ drot(ro.e(r.0.L E.uPy)
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» Each species moves in different bounce frequency wp W.R.T.
mode frequency w, treat the 2nd term differently.



Kinetic Description of Plasma Responses

Thermal Electrons

» Bounce frequency wpe > w, keep the Oth harmonic, treat higher
ones perturbatively

N { 1 p=20
wmpwee _[sze —l_(PSbe)z—l_"'] p#0.
» Fo, Maxwellian
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Notice: ¢m—o(the 0" Fourier component in #) disappears in Le.
To bring T¢ in, we have to keep ¢m—11 IN Le.



Kinetic Description of Plasma Responses

Thermal lons

» Bounce frequency wp < w,
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Kinetic Description of Plasma Responses

Polarization Response for Thermal lon

» Polarization term emerging from FLR

o [ Prot ”)m - V10(7
» Interms of m = 0 component ¢, L, and £; contribute to £
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Kinetic Description of Plasma Responses

Energetic lon Response (Trapped & Passing)

» Bounce frequency wp, ~ w. No perturbation expansion
parameter available, keep all terms in f,.

» D(w) is self-adjointin £; = [ dI"¢pTD(w)¢, o7 — ¢ in L.
» Only ¢(m = 0 Fourier component of ¢(r,0) in 0 ) is kept in Ly

since we find §bj:1/¢0 ~ kJ_ps <1, ps = m;l;eug_
aF r, E, , P
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Kinetic Description of Plasma Responses

Integro-differential Equ. v.s. Differential Equ.
» Solve integro-differential Equation L[, ¢'] = 0 if the orbit width
Ap is comparable with the mode width
KiAp ~ 1

» Differential equation can be obtained in the thin orbit limit,
1 OFy,
K, |A 1, | =—=—|A A 1
Loy b<<,\,_-har!b | |b<<

In this limit one can expand ¢(r) in L, around ry, the guiding
center for trapped particles or the reference position for passing
particles

Lalo] = Lu[o, @', 0", 0"

Variation of £ w.r.t. ¢ leads to 4" order differential equation for ¢



GAM Induced by Energetic Trapped Particles

Assumptions

» Orbit width is thin but comparable to the mode width, so deal with
iIntegro-differential equation directly.

» Effects from outside of energetic particles are neglected, so
92 — 0 at the boundary of energetic particles

» Energetic particles are equally distributed around the drift center
Iy corresponding to Py

» Contribution is mainly from particles in the range where Fy is
linearly increasing in E

Fh(E, 11, Pg) o< (E — Emin)0(pr — 110)0(Py — Pgo)



GAM Induced by Energetic Trapped Particles
Trapped Particles’ Orbits

Pendulum Equation

0 =—w2ysinf; wpo =/ puBoe/(gR)
—07 <0 <07, 6 — —turning angle
0 <07 <0, 6, — —largest excursion poloidal angle

» Exact Bounce Frequency

b (K2(67)) m/2
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K(KE(0r)) = /OW (1 — kE(0r) sin? ) ~1/2

k = sin(67/2)

» Angle
(t | 07) = 2arcsin{k sn(wpot|k?)} ~ 2k sn(wpot|k?),
47 pn+1/2

= KK nz::O T sin[(1 + 2n)wpt] ~ O7 sin(wpt);

p = exp[-mK(1 — k?)/K(k?)]




GAM Induced by Energetic Trapped Particles
Trapped Particles’ Orbits

Varying of Minor Radius

» Canonical Angular Momentum Conservation

Mv
MRov) — ey(ro +dr) = —ei(ro) = or(t|or) = e—B,!

» Energy conservation

Vi = £1/2(E — uB) = £+/2uBge(cost — cosfr)
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GAM Induced by Energetic Trapped Particles
Trapped Particles’ Orbits

» Symmetries of Orbits

o) = 0y )

o1 = —o(t)
sr(t ) = or(t)
or(—t) = dr(t)

Figure: banana orbits

» Expand ¢(ry + dr) in terms of basis
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GAM Induced by Energetic Trapped Particles
Quadratic Form

» Quadratic Form for ¢

3__“’_ _QzGAM (% / e OFn
/d rr@rrwc (1 2 dEdT —- M. O

6% + % Pl UCRCT)

» In terms of basis functions, a variational algebraic dispersion
function is obtained

02
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» Mode equation

02 N
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GAM Induced by Energetic Trapped Particles
Quadratic Form

Matrix A
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GAM Induced by Energetic Trapped Particles
Quadratic Form

Matrix 5

B o [w, kK2(6,)]
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GAM Induced by Energetic Trapped Particles
Quadratic Form

Numerical Resulis

waam(h)/wpo =11, =02, 0, =1
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GAM Induced by Energetic Passing Particles
Orbits of Passing Particle

» Specifying the expansion point ry for F and ¢
Canonical angular momentum conservation

P¢ = MhRVH — eth(r) = MhR—VH — eth(ro),

Iy 1s the position where the mechanical angular momentum is the
bounce average of itself.

q
Wehlo

or =+

(Rvj — Rv))

» For Strongly passing particle, v, — 0. projection of toroidal
rotation leads to

v E
or = iﬂ CoSf = i&\/ZNBO/\cos(wbt),/\ = ——
Wceh Weh ,uBo

» Equivalently, noncanonical angular momentum specifies flux
surface (ry) around which expansion is taken.

Py = Py — MpRv) = —enp(ro),



GAM Induced by Energetic Passing Particles

Mode Equation

Expansion

» Expanding F and ¢ in L, around ry
F is a function of E, u, Py

Substituting

OF (E, u, Py) _OF(E,pu,py), N OF(E, u,py) aﬁd)‘
oE  MPe T 9E Py op, M oE '
8F(E7M75¢) R()Ab ) o )
5E | 1Py O( " ); I'nscale of hot particle distribution
8F_(E7:ua rO)
OE 22300
. bz .
OF(E,p,1) O°F(E 1) L 1529 F(E,u,r)
OE oroE 2 or29E

1 1
o(r) = o(ro) + ore’(ro) + §5f2¢”(fo) + 65f3¢/"(f0)

into £ and then replacing ¢(ry) by

1 1
6(10) = 6(r) = 8r¢'(r) + 50r°¢” (r) = or°¢"(r)

All Fourier Transfers on ¢(r) become Fourier Transfers on orbits ér,-6r> and 6r°



GAM Induced by Energetic Passing Particles
Mode Equation

Mode Equation

Taking variation of £ w.r.t. ¢ leads to 4" order ODE about ¢, a total
derivative about ¥(r) = ¢’, so we have a 2"? order ODE about V¥
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GAM Induced by Energetic Passing Particles
Mode Equation

2" Order ODE

» Simple F(x, A, ) is taken

Na(X)  O(A—NMA)O(N2 — A) O(p — 11)O(pi2 — 1)

FUGA ) 2\/§7TBS/2 VA — /N V(2 — )

» Take energetic particle density such that n, = n, =0

nh(x) = nho(1 — X2)3, X = r/rh.

» Simplified mode equation

Ap o d%
( In ) [dXZ

+ A(x, Q)%] + B(x,Q)y =0

S xm0@() 41 - g,] }

A(X,Q, Qpm, A\,n) = Xhn(x)Q2(x)[4 g1 — g%}




GAM Induced by Energetic Passing Particles
Mode Equation

2"d Order ODE—-Continue

B(x, 2, Qom, v, Do/ iy A1) = (4g133 ik {(1 - @(1 —n)
{ﬁh(;’j’)(gl(x) - %) roltt oz \F;)m )
g (" e~ Vi " G )
i (%)2[12;;;&)((3() (891 -20)+ 8hh(f)7<;3£()32(x) 3 X000
+16xc122(x) c?;zXQZ(X)(@ +20)l}
Np(x=0) 2

&= 7(x=0) 9

Q(x) = q(x)/qo
g1 = 9(x, 2, Qpm, A, n)—outcome of integral over velocity space

g% = g(X7 9/27 Qbm7 )\7 77)



GAM Induced by Energetic Passing Particles
Mode Searching

z-Wavelength Mode & Theory

> W(x) ~ Jo(y/B(x = 0,Q)x) around x = 0; B = ($2)2B(x,Q)
» Mode equation tells
global dispersion function = local dispersion function+ O((%—:)Z),
S0 possible that
1. Q= Qp + 69, Qo—local root of B(x = 0,Q) = 0, 6Q2—small shift
2. %-wavelength-like mode: maximum at the center and damps
outwards with no oscillation.
» Theory
1. Around the center x = 0,

A(x,Q) — % B(x, Qo + 6Q) = BadQ + %Bxxxz

2. Mode equation

a°v Llav BadQ
dyz  y dy

Schroedinger equation for 2-D axially symmetrical harmonic
oscillator in polar coordinates with m=0. The ground state has no
oscillation if Bxx has a predominantly negative real part.



GAM Induced by Energetic Passing Particles
Mode Searching

Theory of %-Wavelength Mode-Continue

» Solution

W(x) ~exp (— 1/ _gxxxz)

» Validity of expansion condition check

[ 1 1
k(X) = — —EBXXX, X ~ \/é(_EBXX)_1/47 B = AEZB/

1/2
K(X) Db ~ (~Bl) /40y

So |k(x)|Ap < 1 can be guaranteed for small orbit width A if
other parameters in BB are properly chosen such that |(—B%, )"/
IS not large.



GAM Induced by Energetic Passing Particles
Mode Searching

Comparison between Theory and Numerical Results

o =1.056, Ap/ry =1/20, Qpm = 1.225 =
Qana/ytica/ = 0.552005 + 0.146526i

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
P ¥
- 0.5
14F [
i Ap/rh = 1/20 r
Lar —— Analytical 04 — Analytical
: , i — Numerical
—— Numerical 03p

0.2} Ap/rhn=1/20
Ap/rh=1/4 i Ap/rh=1/4

o1l

L L L L 1 L L L L n n 1 n L L L 1 n T
0.5 0.0 0.1 0.2 0.3 0.4 05

Figure: Real part of W Figure: Imaginary part of W



GAM Induced by Energetic Passing Particles
Mode Searching

Comparison between Theory and Numerical Results— Continue
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Conclusion

Summary

» We treat thermal electrons, thermal ions and energetic ions
differently due to the differences of the relative magnitudes of
their bounce frequencies with respect to the mode frequency.

» Find out unstable EGAM driven by energetic trapped particles
when their orbit widths are comparable to mode width.

» Find out unstable EGAM driven by energetic passing particles
when their orbit widths are smaller than mode width.

» Hard to match experiment as differential equation breaks down
at relative small A, /r, for o ~ 1.
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