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Abstract

MHD REGIMES AND FEEDBACK STABILIZATION IN ADVANCED TOKAMAKS.

Various schemes are presented for improving the performance of tokamaks. These schemes
attempt to maximize $ while obtaining a high value of bootstrap current fraction. General principles
are presented for guiding a search for such configurations. Several solutions are illustrated by ARIES
and negative shear configurations. These attractive configurations rely on ideal wall stabilization of the
low-n free boundary modes. Real walls, however, are three-dimensional and resistive and the paper
addresses the theoretical treatment of these real three-dimensional and resistive walls. First, progress
on a PEST/SPARK coupled code for treating three-dimensional walls is presented. This new code
significantly extends the capability of PEST to allow an assessment of the stabilizing influence of a
perfectly conducting wall with arbitrary poloidal and toroidal variation. Secondly, resistive walls are
considered. A new mechanism for stabilizing the resistive wall mode is presented. This mechanism
relies on plasma rotation, viscosity, and inertia. A stable window in the position of the resistive wall,
similar to that demonstrated by Bondeson and Ward, is shown to exist for reasonable values of the
rotation frequency. In addition, consideration of resistivity at the mode rational surface also leads to
a stable window. Lastly, an active feedback stabilization scheme is considered for those cases where
complete stabilization by the three-dimensional resistive wall is not possible. This feedback scheme
relies on modulating the ponderomotive force of radiofrequency waves. A model calculation provides
insight into the optimal antenna and detector arrangements.
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1. MHD Regimes for Advanced Steady State Fusion Reactors

The Troyon stability limit, which is normally written as 8 < Crl,/aB, where
Cr = 3.5, can also be expressed in the form

(e8,)(B/€) < (CT/20)*(1 + K7)/2
where « is the plasma elongation. This form clearly shows the tradeoff between 3
and B,. The condition for efficient current drive is that €8, ~ 1. This implies low
/¢ values unless the Troyon limit is exceeded by achieving 8y > Cp. The goal
of the steady state reactor is to use current drive to produce favorable plasma
current profiles which allow increasing Sx and 8,y values (~ 1) which maximize
the bootstrap fraction.

There are general principles that serve to guide the search for high 8, high
bootstrap fraction plasmas. For ballooning mode stability in the first regime, we
want high shear everywhere. Broad pressure profiles normally lead to the highest
stable values of 8, but not always to the highest values of §.. Triangularity is
always found to be stabilizing in elongated plasmas.

For ballooning mode stability in the second regime, we know we need low, but
non-zero, magnetic shear near the center. Negative shear is very stable. Peaked
pressure profiles are normally necessary for access into full second stability, as is
the condition gg > 2, and sufficient triangularity. Non-zero values of edge current
improve edge accessibility.

For free-boundary n =1 (kink mode) stability, we want high magnetic shear
near the edge, or alternatively low values of edge current. It is known that the
maximum stable 8 value increases with the internal inductance £; for fixed plasma
current I, and go. Large values of ¢. and large £; lead to the highest values of
Bn, but not necessarily the highest values of §,. There is no second stability for
the n = 1 kink mode.

There are also general principles that guide us in seeking high bootstrap
fraction configurations. In order to obtain It,/I, ~ 1 normally requires a value
of e, ~ 1. At fixed values of €8, the bootstrap fraction increases as the current
profile is flattened (or ¢./qo is lowered), and as the density is peaked. Good
bootstrap alignment normally requires both peaked pressure profiles and flat
current profiles.

We find that for a first stability regime plasma, it is not possible to exceed
bootstrap fractions of I,/I, ~ 0.7 for conventional plasma profiles. The second
stability regime is more compatible with high values of bootstrap fraction. It is
possible to find at least two classes of configurations with s/, > 0.9; one with
a centrally peaked current profile and with gg ~ 2 and 8y ~ 5, and one with the
current peaked off axis with negative central magnetic shear and with Sy ~ 5.

There are at least 4 configurations that have been proposed as potential
steady state reactors: The ARIES-T reactor (go = 1.3, ¢, = 3.9, 8 = 1.9%, s/ I, =
0.68, A = 4.5)[1] represents a compromise between high 8 and high bootstrap
fraction, while being constrained to be in first stability. It is stable to all MHD
modes without a conducting wall.
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The ARIES-II configuration [1] has sufficient elevated central safety factor,
and sufficiently peaked pressure profile that it can exist in the second stability
regime and thereby have simultaneously high values of 8 and §,. The ARIES-II
configuration has go = 2.0, ¢, = 4.6, 3 = 3.4%, I;s/Ip = 0.98, A = 4.0, however a
nearby conducting wall located at b/a = 1.3 is necessary to stabilize the low-n
MHD modes. The ARIES-III configuration (go = 2.0,¢. = 2.2, 8 = 24%, I,/ I, =
1.16, A = 4.0) which utilizes advanced fuels, has high 3 values, far into the second
stability regime, but it requires plasma profiles with pressure gradients which
remain finite out to the plasma edge, and with finite edge plasma current density
[2]. It also requires an extremely close conducting wall to stabilize the n = 1
kink mode.

A configuration with a non-monotonic ¢ profile[3] appears to offer significant
advantages over the normal second-stability profiles. This mode maximizes f,
by distributing the plasma current to give negative magnetic shear and second
stability in the central region. Off-axis current peaking and high-3 allows for a
very good match of the bootstrap and the equilibrium current profiles, and an
attractive configuration is found with go = 2.5,¢. = 2.35,¢min = 2.1 at rfa ~
0.75,3 = 4.8%, Iys/I, ~ 1, A = 4.5. This configuration is a combination of both
1st and 2nd stability, but requires a conducting wall at about 1.3a to provide
for kink mode stability. For these profiles the stability limit would decrease from
Bn = 5 to fn = 2 if the conducting wall were not present. Additional analysis
indicates that this configuration is stable to resistive modes, and is stable to
kinetic instabilities in regions where the pressure gradient is large [3].

2. PEST/SPARK Coupling for §W Analysis with 3D Ideal Walls

The attractive configurations discussed above rely on wall stabilization of the
low-n free boundary modes. Stability calculations are typically performed using
a perfectly conducting axisymmetric wall similar in shape, and concentric with,
the plasma-vacuum interface. Real tokamak walls, however, are intrinsically
three-dimensional and resistive, and we should understand the influence of these
factors on free boundary instabilities.

To analyze ideal time-scale stabilization quantitatively, the PEST-VACUUM
codes have been coupled to the 3D SPARK electromagnetics code, suitably mod-
ified to calculate the perturbed magnetic field from the induced wall currents us-
ing the PEST perturbations as its driver[4]. For each surface poloidal harmonic
of the PEST displacement, the SPARK code is used to find the 3D magnetic
perturbation, §B; which, when driven by the fields obtained from PEST, com-
bine with them to satisfy the appropriate boundary conditions at the 3D shell.
The traditional PEST treatment for 2D vacuum-wall systems solves Laplace’s
equation for the magnetic scalar potential using collocation techniques for the
integral equations generated by Green’s second identity. The effects of the wall
are incorporated directly into the resolving matrix for the potential. Now, for 3D
wall systems, the vacuum treatment is reformulated into several steps to linearly
superpose distinct contributions coming from a) the plasma in the absence of the



254 POMPHREY et al.

shell and from b) the shell in the absence of the plasma but driven by the plasma
perturbations, while ensuring that the boundary conditions are appropriately
taken on the fotal magnetic field. A modified vacuum energy matrix is finally
calculated which is spectrally filtered in ¢ for input to PEST.

The SPARK code is used for step b) for eventual 3D applications. Meanwhile,
it has been verified in a cylindrical limit (where vacuum fields are easily analysed
in terms of Bessel functions), and in a toroidal case with poloidal cuts in an
axisymmetric shell, that the new vacuum PEST algorithm gives identical results
compared with the traditional PEST treatment. The coupled PEST/SPARK
code significantly extends the capability of PEST to allow an assessment of the
stabilizing influence of a perfectly conducting wall with arbitrary poloidal and
toroidal variation.

3. Resistive Wall Mode Stabilization

Bondeson and Ward[5] have recently demonstrated the existence of a narrow
window for placement of a resistive wall which results in complete stabilization
of 3 driven external kinks. The stabilization, which requires sonic rotation, is
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FIG. 1. Growth rate v versus wall rotation frequency Q for various viscosities (fixed resistive wall
location t,, and time constant 7,,).
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ascribed to toroidal coupling of the plasma perturbation to sound waves and
Landau damping. The interesting possibility of complete stabilization has en-
couraged a consideration of additional damping mechanisms which can increase
the size of the stable window.

The MH3D code is an initial value, nonlinear, 3D toroidal, resistive, com-
pressible MHD code which is currently being used to study the stabilization of
external kink modes. In the present application, a high conductivity plasma
“core” region is surrounded by a low temperature resistive mantle, too resis-
tive to carry any significant perturbed current. Plasma flows are allowed in the
mantle as well as the core. Anomalous viscosity is included in the momentum
equation, with viscosity, i, a prescribed function of radius. Qutside the mantle is
a resistive (thick) wall at which slip conditions for the flow velocity are applied.
Beyond the wall is a vacuum region which extends to a computational boundary
where B - i = 0. MH3D calculates and perturbs around equilibria with sheared
toroidal mass flow, or can employ a rotating resistive wall.

To understand the physics of viscosity/inertia stabilization with rotation we
will examine results for a cylindrical plasma model and a rotating resistive wall.
Figures 1 and 2 present typical results, showing plots of linear growth rate, v,
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FIG. 2. Growth rate v versus wall rotation frequency Q for various resistive wall positions 1, and wall
time constants 1, at fixed viscosity.
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versus wall rotation frequency, Q, for a single helicity m/n = 2/1 external kink
resistive wall mode, at zero beta. (Toroidal calculations with aspect ratio 5
show similar results). The equilibrium current profile is J ~ (1 — r?)¥, with
v chosen to give gy = 0.89 and q; = 1.80. The ¢ = 2 rational surface lies at
rs = 1.05 and the critical radius at which a perfectly conducting wall stabilizes
the kink is 7. = 1.20. Results are shown for various resistive wall positions,
T, plasma-mantle viscosities, p, and wall time constants, 7,,. All variables are
non-dimensionalized by scaling length and time with respect to minor radius and
Alfven time, respectively.

In Fig. 1 we show the dependence of growth rate on wall rotation frequency
for three values of viscosity, 4. The resistive wall position and time constant are
fixed, and pcore = Bmantle = const for each curve. Consider first curve (1) corre-
sponding to u = 1075, a value consistent with typical plasma edge parameters.
Rotation is initially destabilizing; however increased slippage between the mode
and wall frequencies (see dashed curve for mode frequency) causes a roll-over in
vs. €2, and complete stabilization is obtained at Q.. ~ 0.06. Curves (2) and (3)
show that decreasing the viscosity makes stabilization by rotation more difficult.
In fact, by decreasing ¢; slightly we find that the modified curve (3) flattens out
after the early roll-over, and complete stabilization is no longer obtained even for
wall frequencies of order the Alfven frequency. By varying the viscosity profile, it
is found that it is ¢ at the edge of the plasma core, rather than p in the mantle,
that dominates the stabilization of the resistive wall mode. The resistive wall
eigenfunctions show the importance of the restriction on plasma motion caused
by the mantle inertia: the mantle allows flows which restrict the edge core plasma
displacement, leading to stabilizing edge eddy currents.

Comparing curves (a) and (b) in Fig. 2 shows the effect of changing the
resistive wall position, holding the wall time constant and plasma core/mantle
viscosity constant. For zero wall rotation, of course, the mode growth rate is
smallest for the resistive wall placed closest to the core plasma. However, mode
slippage (an effect due to viscosity and inertia) is obtained more readily for the
wall at r,, = 1.15 (closer to r.) than it is for 7, = 1.10. This leads to a crossover
of the curves of v vs. Q and complete stabilization of the wall mode at a smaller
Qcrit. Finally, in Fig. 2, curves (d), (b), and (c¢) show the effect on Qi of
increasing the wall time constant(curves (¢) and (d) have been normalized to
give the same growth rate as curve (b) at Q = 0). A deterioration in the ability
of rotation to stabilize the the wall mode is seen as the wall conductivity is
degraded.

Using the linearized incompressible equations of reduced MHD and treating
the resistive wall in the “thin wall” limit, a dispersion relation may be derived
which exhibits good qualitative, and fair quantitative agreement with the MH3D
results, and provides additional understanding of the role of viscosity in stabi-
lizing wall modes in the presence of rotation. In the regime of relevance to the
MH3D calculations, the mantle is assumed to be too cold to carry any perturbed
current. A viscous/inertial layer forms in the outer regions of the hot plasma.



TAEA-CN-60/D-6 257

2

- i
==
<
vy
N o
S
s
vy
oL
= .04
Y
3 B \
bl \\
b
= \
° A\
1 1 1 1
1.5 1.75 2 2.25
Tw

FIG. 3. Growth rate v of a resistive wall-resistive external kink mode as a function of wall position r,,
Jor 15 equally spaced values of Doppler shift frequency Q between 0 and 0.04.

This layer can modify the magnetic eigenfunctions and lead to stabilization. The
analysis reduces to usual asymptotic matching of “outer” magnetic eigenfunc-
tions to “inner” layer solutions. The two layers are the edge region of the plasma
and the resistive wall.

Under certain circumstances the kink mode dispersion relation reduces to
a simple cubic. One of the roots is uninteresting because it is always stable.
The two remaining roots are identified as the ideal external kink and resistive
wall modes. At sufficiently high plasma rotation rates the regular resistive wall
mode is stabilized and the ideal mode is almost marginally stable with inertia
balancing the free energy (i.e., A’) term in the dispersion relation. The mode is
slightly destabilized by the wall resistivity and slightly stabilized by viscosity. For
sufficiently long wall constants viscosity is dominant and the mode is stabilized.

Finally, we return to consideration of a cold mantle surrounding the hot core,
but this time take into account the perturbed plasma currents in the mantle
tearing layer[6]. This can lead to significant additional stabilization with rotation
present[7, 8.

Several aspects of the stabilization of this resistive version of the kink mode
can be understood in terms of a simple cylindrical model. For zero 8, growth
rates for a step function current density model with a resistive wall and rotation
are shown in Fig. 3. For this case, g = ¢ = 1.05, m = 2,n = 1,7, = 0.0005,
and vy; = 0.01, where +, is the tearing mode growth rate with the wall at infinity.
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The ¢ = 2 surface lies at r, = 1.38 and disappears from the plasma for wall
positions 7, < r,. The ideal wall mode is unstable for 7, > r, = 2.11. Figure 3
shows the growth rate as a function of wall position for 15 equally spaced values
of the wall rotation frequency © between zero and 0.04. It is seen that a stable
gap in r,, exists for Q/; of order unity, and for €2/v; >> 1 the gap consists of
almost the whole interval 7, < 7, < 7. For Q ~ w, and T, a few hundred eV,
Q/7: is of order unity. For hot plasmas Q/v; ~ T+ is large. Unlike the results of
Ref.[5], the stability gap is not associated with separation of the ideal wall and
resistive wall modes. For example, for the parameters shown in Fig. 3, there is
no mode crossing, although crossings can occur for negative 7[9}. For finite 3
in a cylinder the ideal kink can be unstable with a mode rational surface in the
core plasma, unlike the case with zero 8. For 7., qo, and 2 fixed, as 8 decreases
the mode passes through the following regimes: (i) unstable with ideal plasma
and wall, with a mode rational surface in the plasma, (ii) below the ideal plasma
threshold, but unstable as a resistive plasma mode, with ideal wall, (iii) below
the threshold for resistive plasma instability with an ideal wall, but unstable as
a resistive plasma-resistive wall mode, and (iv) a resistive plasma-resistive wall
mode stabilized by rotation (i.e. in the stability gap of Fig. 3.)

In a torus, the major influences which must be taken into account relate to
the width of the poloidal mode number m spectrum, the dominant m and €2/, at
g = m/n. First, in the presence of sufficient rotation shear, the resistive plasma
kink will have a narrower m spectrum{10] and the dominant m will depend on
the profiles of resistivity and Q. This narrowing causes the § limit of the mode
to be closer to that of the ideal plasma mode than in the case with unsheared
rotation. This limit may well be sufficiently close to the ideal threshold that it
is within the experimental errors. There will be a large stability gap if /v > 1
at ¢ = m/n.

This type of resistive wall stabilization can also occur for current driven modes
in toroidal geometry, and in particular can occur for zero 3, unlike stabilization
by coupling to sound waves.

4. Ponderomotive Feedback Stabilization of External Kinks

We have analyzed an active feedback scheme for MHD mode control using the
modulated ponderomotive force (PF) of an array of radiofrequency (rf) antennas
as the active stabilizing element. The dominant contribution to the PF is pro-
portional to the product of the radial derivative of the plasma dielectric and the
square of the slow wave rf field, which is modulated in response to an MHD mode
detection system. The eigenmode equation for external kinks[11] has been mod-
ified to incorporate this PF feedback scheme, and feedback models have been
formulated which represent two general types of feedback: A “local” response
model where each antenna responds to the real-space plasma displacement mea-
sured locally (summed over all Fourier modes), and a “Fourier” response model
where the antenna system is programmed to respond to a particular Fourier mode
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(or superposition of modes). Numerical marginal stability calculations have been
carried out in the cylindrical tokamak kink model to study the parametric depen-
dences of each feedback system, and it is shown that the Fourier mode response
is generally superior. The model calculations provide insight into the optimal an-
tenna and detector arrangements, and preliminary rf power estimates have been
made for stabilization of the n=1, low-m kinks on PBX-M, TPX and ITER.
These estimates suggest that PBX-M would be able to do proof-of-principle n=1
kink stabilization experiments with the present system of two IBW antennas and
available power supplies. Finally, rf and MHD issues critical to further develop-
ment of this stabilization technique have been identified for future study.

A preliminary n = 0, m = 1 modulation experiment is planned on PBX-M
to test the ability of the IBW antennas to exert a PF on the plasma, and this
experiment has been simulated by incorporating the equilibrium ponderomotive
force into the TSC code. The simulation predicts that a modulated PF of the
proper amplitude and phase can counter the magnetic axis shift induced by a
vertical field modulation for a reasonable set of PBX-M experimental parameters.

This work was supported by US Department of Energy Contracts Nos. DE-
AC020-76-CHO3073, DE-F605-80ET-53088, W-7405-ENG-36, and DE-FG05-93ER-
81587.
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DISCUSSION

J.A. WESSON: What is the relation of your ‘mantle’ to the real situation in
which the scrape-off layer is much narrower than the plasma-wall separation?
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N. POMPHREY: The existence of a mantle is not essential to the viscous/
inertia stabilization mechanism, as may be seen particularly in the analytical results
of R. Fitzpatrick (IAEA-CN-60/D-5), who obtains stabilization even in a vacuum.
In the resistive external kink stabilization, resistivity is only needed up to the location
of the tearing layer region formed at the rational surface.

M.G. HAINES: Did you use isotropic or anisotropic viscosity for the magne-
tized plasma?

N. POMPHREY: We used a simple isotropic viscosity model with F .y =
V X puV X v in the momentum equation of motion.

M.G. HAINES: Did you use a realistic value for viscosity?

N. POMPHREY: The value for viscosity, u, was chosen in accordance with the
observed anomalous values at the edge of tokamak plasmas. In terms of momentum
diffusivity, the value corresponds to 10 m%/s.





