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Purpose of Talk
• Need for nonlinear benchmarks
• Dominant Nonlinearity is due to dynamics of

phase space structures
• Model simulations and analysis have already

been performed; results will be discussed
here

• Probing for resonant phase space areas
   an interesting diagnostic to develop
• New direction for simulation is to fold in fluid

equations with dynamics of resonant particles
• Following just  resonant particle dynamics,

which may lead to alternate to combine fluid
and kinetic phenomena.



Basic assumptions for predicting saturation
level of resonant particle modes

1. Separation of resonances;
2. Low saturation level, with a background plasma

wave described linearly;  resonant region   nonlinearly
3. Presence of source, sink and extrinsic dissipation mechanisms

Further simplifying assumptions
1. Perturbative mode (non-perturbative mode insight not as

complete)
2. Closeness to marginal stability (a universal characteristic of a

steady plasma discharge)
3. Treatment of 2-D phase space problem

(extension to 6-D phase space is approximated by 2- D surfaces
covering 6-D space as will be discussed)
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Natural variables for problem
• Trapping frequency:        radian wave trapping

frequency of deepest trapped particle in fixed wave
field (for sufficiently small amplitude

    e.g. electrostatic waves

• Linear growth and damping rate:
• Effective collisionality:

Saturated amplitude values can be expressed in terms
of these parameters
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Saturation in 2-d phase space scenarios
1. Initially smooth function, without dissipation,

grows until local gradient of resonant particle distribution is
flattened (Sagdeev, Fried, Liu):

2. saturation occurs when excited wave momentum equals wave
momentum released by resonant particles:
obtained from simulation

3. Two  extreme assumptions bound this result:
a. Slow adiabatic evolution of wave:

b. Impulsive approximation (saturated mode amplitude
instantaneously reached and particles then absorb released wave
momentum):

4. Natural Saturation Level:
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Sink and Source Maintain Steady Saturation Level

1. Dissipation,                  is taken into account
2. There is a balance between the rate energy is

extracted from the system via dissipation and
energy is fed into the resonant region from the
source.

3. Two limits analyzed:
a. significantly above marginal stability:

b just above marginal stability threshold:
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Bursting
1. When saturation level is below ‘natural saturation

level’ steady sustained level cannot be maintained,
as follows from energy considerations  (more power
dissipated that supplied by beam)

2. Significantly above threshold and
       burst saturate at                           and expected to

recur within a period

3. Closer to threshold, pitchfork bifurcations arise giving
rise to ever more complex response, terminating

       an explosive instability, which is the signature to
frequency sweeping events
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“Signature” for Formation of Phase 
Space Structure (single resonance)

Explosive response leads formation of phase space structure

exp(i!) = "
G#

|G# |
;  WE=ReG# | A |2 (prtb wave)

Cubic nonlinear equation near
marginal stability for perturbative (φ ≈ 0)
and  non-perturbative systems (φ ≈ 1)

A !
exp i" ln(t0 # t)( )

(t0 # t)
5/2

Valid as long as amplitude
sufficiently small, must
then fail and then what?

Explosive self-
similar solution



Hole-clump pair t1/2 frequency sweeping
• Simulation of near-threshold bump-on-tail instability (N. Petviashvili, 1997) reveals
    spontaneous formation of phase space structures locked to the chirping frequency

• Chirp extends the mode lifetime as phase space structures seek lower energy 
    states to compensate wave energy losses due to background dissipation

• Clumps move to lower energy regions and holes move to higher energy regions
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How can phase space structure evolution
be explained?

 We need equation that reflects mode in presence of phase 
 space structure. 

a. We assume an ideal phase space  structure is established where 
distribution in trapping region is the same as it was when mode 
was first created and distribution outside was the original 
unperturbed distribution
b. Outside trapping region,    contribution 
to resonant particle current negligible
c. Integration of resonant current then 
straight-forward to obtain

 extra reactive contribution from
trapped particles.
d. Equilibrium of plasma is

        is then altered to account
for non-linear BGK from
a single resonance !
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Role of dissipation
 We need account for extrinsic dissipation that is extracting energy
    from energetic particles

phase space clump 

phase space clump 

t t + !t

• Phase space structure has to sweep in the resonant frequency
in order to balance the energy dissipated by extrinsic dissipation!
• Phase space structure moves to lower energy states (holes rise & clumps
fall in electrostatic two stream instability)
• The essential theoretical aspects of model have now been explained
and will now be compared with numerical simulation.
• Using BGK and power transfer conditions yields saturated amplitude
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Convective Transport in Phase

• Explosive nonlinear
dynamics produces
coherent structures
– Convective transport

of trapped (“green”)
particles

• Phase space “holes
and clumps” are
ubiquitous to near-
threshold single mode
instabilities
– Examples: bump-on-

tail, TAE’s, etc.

N. Petviashvili et al., Phys. Lett. A 234, 213 (1997)



From 2-D phase space to 6-D phase space:
View as ‘parallel’ 2-dimensional phase spaces

1. In tokamks and stellarators nearly all the unperturbed orbits are
 ‘integrable’ with three adiabatic constants of motion defining the
orbit. µ ≡ magnetic moment very robust constant of motion nearly
every confinement device. In tokamaks two constants of motion are
exact; Pφ ≡ angular momentum (also an adiabatic invariant) and E ≡
energy from which third adiabatic invariant is determined.

2. One then constructs perturbed interaction using action angle
variables  for the Hamiltonian

with  

H = H0 (J j ) + ieC(t)
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Reduction to 2-dimensional phase space (continued-2 )
3. Expand interaction term in Fourier Series of action angles

4. In resonant interaction, most terms gives rise to rapidly
oscillating terms in frame of wave, but only particles
near resonant condition,

give rise to non-oscillatory (secular terms).
5. Keep only this single resonant Hamiltonian, and account for other particles from

reactive linear response
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Reduction to 2-dimensional phase space (continued-4)
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5  wave trapping frequency of deeply trapped particles 

7. We thus we may hope to tract ‘2-D sheets’ in phase space that
in principle covers the entire phase space region of resonant particles

8 .   If in a simulation we can track frequency of resonant structure through
dynamic feedback, only regions of phase space near moving resonance needs
to be tracked using a  time step determined by            rather than          . This
can be a diagnostic tool and perhaps a way to speed up the treatment of
resonances particles, such for resonances of background electrons or ions
giving rise to damping
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6. Reduced Hamiltonian gives rise to Vlasov equation is 2-D Vlasov 
      equation (with a frequency sweeping term and we add collisions



Wave Evolution Equation
1. Maxwell’s wave equation can in principle be written for a

medium with a spatially non-local linear reactive conductivity.

and a nonlinear source of current from resonant particles
2. Electric field taken in the form,

3.             is best guess for eigenfunction’s  spatial structure
4. Quadratic form constructed from wave equation in standard

way to form wave evolution equation
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Wave Evolution Equation -2
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Basic Wave Equation for long time scale time steps:

Reactive conductivity tensor in frequency space:
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Saturation Levels in Multi-Dimensions

1.   Saturation levels very similar to 2-D phase space levels when
      expressed in terms of appropriate variables
2. For example, for  the sweeping problem, close to resonance 
      the saturation level and sweeping rate is given by:
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3. Saturation level for constant amplitude saturation regime where 
      there is a relatively high collisionality has been programmed 
      into theNOVA-K code by Nicolai.



Summary
1. Considerable theory available to verify predictions and understand
dynamics of kinetic simulation codes

2. It would be very interesting to attempt to track phase space of 
 resonant region
   a.  Resonant region could be tracked with passive tracers
   b. Tracers can feed back to the overall dynamics through
       reduce Hamiltonian that move particles on ‘sheets’ of phase
       space
   c. Can such simulation be done efficiently? Long time steps, 
       processing is complex (will it be fast or slow?)
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