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Possible Strategies for the Future (continued)

Establish a group in Basic Plasma Science, which

« Will serve as incubator of fundamental ideas which can be tied
eventually to important applications (wave physics, turbulence
and self-organization, laser-plasma interactions)

 Will serve as meeting ground of fusion with beam and space
physics theorists.

« Some of these Ideas can intersect and leverage the work of the
recently established Max Planck-Princeton Plasma Physics
Center.



Opportunities in PPPL

Space Plasma Physics Group
Beam Dynamics and Non-neutral Plasma Group

Magnetic Reconnection Experiment (MRX) and
Its Possible Successor (LRX)

Magnetorotational Instability Experiment

_aser-Plasma Interactions and High-Energy
Density Physics: Experiment and Theory

_ow-temperature Plasma Physics
Hall Thruster Experiment




Impulsive Reconnection: The Onset/Trigger Problem

* Dynamics exhibits an impulsiveness, that is, a sudden
change in the time-derivative of the reconnection rate.

* Dynamics is characterized by the formation of
near-singular current sheets which need to be
resolved in computer simulations: a classic multi-
scale problem coupling large scales to small.

* Magnetic reconnection is likely not the whole
story, requiring intervention of secondary
Instabilities.

Examples

Sawtooth oscillations in tokamaks
Magnetospheric substorms
Impulsive solar/stellar flares



Sawtooth crash in tokamaks

Time-evolution of electron temperature profile in TFTR by ECE
emission
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Substorm Onset:

Auroral bulge
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Substorm Onset:
When does It occur?

A (Onset)
)

Impulsive Growth Phase

J Current Disruption
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(Ohtani et al., 1992) Growth Expansion Recovery



0.5

B Raughness of Growth Phase Arc
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Hall MHD (or Extended MHD) Model and the
Generalized Ohm’s Law

In high-S plasmas, when the width of the thin current sheet ( 4,
satisfies

Ay <cloy  (0rp =[pclw, IT there is a guide field)

“collisionless” terms in the generalized Ohm’s law cannot be
ignored.

Generalized Ohm’s law (dimensionless form)

E+Vx B=£J+d§d—‘]+i(\]x B-Vp,)
S dt n
Electron skin depth de = I—_l(C/a)pe)
lon skin depth di =L (c/wpy)

Electron beta ix



Accelerated growth of the m=1 instability due to Hall MHD effects
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central safety factor q,
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The g(0) problem
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Future directions in sawtooth research

We have identified mechanisms within the framework of
Hall MHD (through geometric adjustment in forming X-
points) that account for the impulsiveness of sawtooth

crashes, but we have not accounted for the q(0) problem.

Current sheets produced during nonlinear evolution of the
sawtooth instability are likely to be unstable to secondary
ballooning modes that may thwart complete reconnection.
There i1s some experimental evidence, especially in recent
TEXTOR observations [Park et al. 2006] as well as
simulations [Nishimura et al. 1999].

Need to run sawtooth simulations including two-fluid (or
Hall MHD) equations in toroidal geometry, including heat
conduction [cf. Jardin et al., IAEA, 2012].

Non-monotonic g-profiles in NSTX (with g(0)>1) can
excite double-tearing modes that can exhibit analogous
dynamics.
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Is Near-Earth Magnetotail
Ballooning Unstable?

“bad curvature”

,/_.-’ .
- - \.\. "\.__\\_-
oy =
L ' e
—_— — 7--------. -

Near - Tail (7 ~10R;)
B, ~ O(1) —O(100) !!



Nonlinear Ballooning: Does that cause substorm
onset?

a Full set of nonlinear fluid equations.

a Line-tying boundary condition is specified on the earth-
side of computation domain, which represents the
surface of ionosphere.

a Does the magnetotail “detonate” in an impulsive
manner due to nonlinear ballooning (as suggested by
Hurricane, Fong, Cowley, Coroniti, Kennel and Pellat,
1999)?



Nonlinear line-tied Parker instability: analogous
to the line-tied ballooning instability

g Vol
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(Zweibel and Bruhwiler 1992, Matsumoto et al. 1993, Cowley et al. 1996)



Nonlinear ballooning instability: formation of

fingers and generation of strong sheared flows
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Nonlinear ballooning instability: absence of
detonation and saturation

Small initial perturbation case
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Detonation is not generic during nonlinear ballooning. There is a
remarkable cancellation between nonlinear stabilizing and

destabilizing contributions, with the consequence that the mode evolves
nonlinearly at the linear growth rate.



Bubbles have a toroidal
magnetic field

B ~30T ("Megagauss”)
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B field believed to arise through a two-fluid effect
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Omega Laser Experiment. MIT-Rochester
Collaboration

Reconnection of magnetic fields
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B field observed to be destroyed as “fast as
possible” Inflow is supersonic (and super-Alfvenic),

Sweet-Parker rates are too low.



HED bubble reconnection regime

Estimates:
¢ L/dl ~ 20'100, LB[di ~ 3'5, di > asp
* V.. /V,>=1 (strong reconnection drive)

A problem, since fast “two-fluid” reconnection
typically gives us only V;, / V,~ 0.1-0.2

We find this leads to highly dynamic current sheet
geometry and flux pileup. Compression of B
raises instantaneous V, over nominal V 5,
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ITER's size requires passive spectroscopy for

measuring core temperature and ion motion

» ITER plasma cross section is
4 m wide and 7 m high

« Charge-exchange-
recombination spectroscopy
is not effective in core

ITER diagnostic port plug with orystal spectrometsr

+  Proposed syesbam for ITER uses G ppechomaiens — 3 aach lookng sadially snd
iormeiia by

K. W. Hill SPIE 8/15/2012



Main Points

Spatially resolved x-ray spectroscopy with a spherical crystal and 2D

pixelated x-ray detector is a highly successful instrument on tokamaks
worldwide

E/AE ~ 10,000 enables Doppler measurements of ion temperature T, &
plasma flow velocity, v

Much new physics understanding has evolved
We are doing the conceptual design for the ITER spectrometers

The technology should also be beneficial on small sources such as High
Energy Density (HED) and Synchrotron Radiation (SR) experiments
— Should provide new HED physics (most previous work with E/AE ~ 1000)

— Possibly improved throughput for SR experiments

2D x-ray imaging schemes using matched pairs of spherical crystals with ™
10,000 times higher throughput than typical pinhole imagers for HED
experiments should benefit both types of experiments

<. W._ Hill SPIE 8/15/2012



Plasmoid Instability of Large-Scale Current Sheets

x 10" 1=0.00

2.0e1

-5 -2.0e2
-0.05 0 0.05




Reconnection Time of 25% of Initial Flux
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(2)Sweet-Parker
Reconnection
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Also see Ji and Daughton, 2012
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Run B, resistive Hall Daughtnn et al. (2009), PIC

]

Largest 2D Hall MHD simulation to date



What are the tools and challenges?

« Simulation tools: Extended MHD (fluid), particle-in-cell
(fully kinetic electrons and ions), hybrid (fluid electrons,
Kinetic 1ons), and gyrokinetics (somewhat underexplored
but very interesting, as Is evident in the recent work of the
PPPL Space Physics Group).

Many challenges:

o Closure: Are there fluid closures or representations for
Kinetic processes?

» Algorithmic: For example, development of scalable
implicit time-integration methods, improved pre-
conditioners, AMR.

Great opportunities for collaborations between applied
mathematicians, computer scientists, and physicists.



Fluxes of energetic electrons peak within magnetic islands

[Chen et al., Nature Phys., 2008]
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e bursts & bipolar Bz & Ne peaks
~10 islands within 10 minutes
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Kinetic dissipation processes In the solar
corona
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Major scientific questions
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*|s there dissipation at ion scales?

In region between ion and electron scales: is there dissipation, cascade?
*\What is the nature of dissipation at electron scales?

*|s the activity at MHD scales and/or kinetic scales akin to interacting waves?
» Are homogenous linear Vlasov predictions, e.g., damping rates, correct, or
useful?

*Where is the entropy actually generated and how?

*Rich area for gyrokinetic simulations (both PIC and continuum)
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