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Collisionality
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Marginal stability                     has been previously analysed
using Krook and diffusive collision operators
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For very fast particles the effect of drag may need to be
included
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The cubic equation
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Near marginal stability the amplitude (A) of an unstable mode
evolves according to the following equation

ˆ
k

!

ˆ
k

!

- Diffusion coefficient

- Krook coefficient

Drag adds oscillatory behaviour, in
contrast to the Krook and diffusive
cases.
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Pure drag
•  For pure drag                there are no steady state solutions
in contrast to the diffusive and Krook cases.
•  Therefore when drag completely dominates we always enter
an explosive regime even in the marginal case.
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Diffusion + drag
•  For diffusion drag steady state solutions do exist
•  For an appreciable amount of drag these solutions become
unstable (pitch fork splitting etc.)
•  Explosive solutions again when drag dominates
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Diffusion + drag
•  For pure diffusion the distribution function does not become
significantly perturbed.
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Diffusion + drag
•  Adding slowing down creates large asymmetric
perturbations in the distribution function.
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Diffusion + drag
•  Compare to pure diffusion with an increasing growth rate.
This implies slowing down is creating a more unstable system
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Krook + drag
•  Krook + drag behaves very similarly to the diffusive + drag
case.
•Note that there are subtleties for low values of β
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Experimental comparison NBI vs. ICRH (TAEs)

•  The resonance width ΔΩ can be estimated for deeply
passing particles for MAST NBI parameters:
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•  Compare diffusion to drag for TAEs
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Experimental comparison NBI vs. ICRH (TAEs)

•  Theory – Drag can dominate  explosive

•  Experiment – Bursting dominates

NBI

ICRH
•  Theory – Wave diffusion  steady state, pitch fork etc.

•  Experiment – steady state, pitch fork etc. dominates


