Slowing-down f_{0} and collisions in GEM

- For alpha particles with distribution $f(\mathbf{x}, v, \lambda, t)\left(\lambda=v_{\|} / v\right)$ in the presence of a particle source, annihilation due to charge exchange, slowing down, and pitch-angle scattering:

$$
\begin{aligned}
\frac{D}{D t} f & =\frac{\partial f}{\partial t}+\mathbf{V}_{H} \cdot \nabla f+\dot{v}_{H} \frac{\partial f}{\partial v}+\dot{\lambda}_{H} \frac{\partial f}{\partial \lambda}-\nu_{d} \frac{\partial}{\partial \lambda}\left(1-\lambda^{2}\right) \frac{\partial f}{\partial \lambda}-\frac{\nu}{v^{2}} \frac{\partial}{\partial v}\left[\left(v^{3}+v_{I}^{3}\right) f\right] \\
& =S(\mathbf{x}, v, \lambda)
\end{aligned}
$$

- Alfvén waves are included in $\mathbf{V}_{H}, \dot{v}_{H}$ and $\dot{\lambda}_{H}$ by adding terms $\mathbf{V}_{H 1}, \dot{v}_{H 1}$ and $\dot{\lambda}_{H 1}$-i.e.,

$$
\begin{aligned}
\mathbf{V}_{H} & =\mathbf{V}_{H 0}+\mathbf{V}_{H 1} \\
\dot{v}_{H} & =\dot{v}_{H 1} \\
\dot{\lambda}_{H} & =\dot{\lambda}_{H 0}+\dot{\lambda}_{H 1}
\end{aligned}
$$

Since the zeroth-order Hamiltonian motion conserves energy, $\dot{v}_{H 0}=0$.

- Assume $f=f_{0}+\delta f$,

$$
\frac{D \delta f}{D t}=-\mathbf{V}_{H 1} \cdot \nabla f_{0}-\dot{v}_{H 1} \frac{\partial f_{0}}{\partial v}-\dot{\lambda}_{H 1} \frac{\partial f_{0}}{\partial \lambda}
$$

- Assuming particles are loaded according to the distribution g, the weight equation is

$$
\dot{w}=\frac{1}{g}\left[-\mathbf{V}_{H 1} \cdot \nabla f_{0}-\dot{v}_{H 1} \frac{\partial f_{0}}{\partial v}-\dot{\lambda}_{H 1} \frac{\partial f_{0}}{\partial \lambda}\right]
$$

- The distribution g satisfies

$$
\frac{D g}{D t}=S(\mathbf{x}, v, \lambda)
$$

Particles should be loaded such that $g\left(\mathbf{x}_{j}, \mathbf{v}_{j}, t\right)$ can be readily evaluated.

- Assume $\delta g / g \sim \delta f / f \sim \delta$ not too small, the approximation $g \approx g_{0}$ is equivalent to adding a $O\left(\delta^{3}\right)$ term in the gyrokinetic equation

$$
\frac{\partial \delta f}{\partial t}+\cdots=0
$$

- If there are only pitch-angle scattering, no slowing down, $g \equiv$ const is an exact solution

$$
\frac{\partial g}{\partial t}+\mathbf{V}_{H} \cdot \nabla g+\dot{v}_{H} \frac{\partial g}{\partial v}+\dot{\lambda}_{H} \frac{\partial g}{\partial \lambda}-\nu_{d} \frac{\partial}{\partial \lambda}\left(1-\lambda^{2}\right) \frac{\partial f}{\partial \lambda}=0
$$

Can $g \equiv$ const $\equiv g_{0}$ be a rigorous solution by introducing an appropriate source term?

$$
-\frac{\nu}{v^{2}} \frac{\partial}{\partial v}\left(\left(v^{3}+v_{I}^{3}\right) g_{0}\right)=-3 \nu g_{0}
$$

Particles need to be randomly selected and removed.

- There are other subtle difficulties near the phase space boundaries.
- If we choose not to change velocity and to evaluate the slowing-down term directly

$$
\left(\frac{\partial \delta f}{\partial t}\right)_{\mathrm{sl}}=\frac{\nu}{v^{2}} \frac{\partial}{\partial v}\left[\left(v^{3}+v_{I}^{3}\right) \delta f\right]
$$

then g can be a constant.

- With coarse-graining, δf is constructed on v-grids. How to reduce noise?

Load a Slowing-down Distribution

$$
g=\frac{1}{C\left(v^{3}+v_{I}^{3}\right)}, \quad C=\frac{4 \pi}{3} \ln \frac{v_{B}^{3}+v_{I}^{3}}{v_{\min }^{3}+v_{I}^{3}}
$$

so that

$$
\int g d \mathbf{x} d \mathbf{v}=V
$$

Collisions are implemented as ($\Gamma(t)$ Gaussian white noise)

$$
\begin{gathered}
\frac{d v}{d t}=\dot{v}_{H}-\nu\left(v+\frac{v_{I}^{3}}{v^{2}}\right) \\
\frac{d \lambda}{d t}=\dot{\lambda}_{H}-2 \nu_{d} \lambda+\left[2 \lambda_{d}\left(1-\lambda^{2}\right)\right]^{1 / 2} \Gamma(t)
\end{gathered}
$$

Equilibrium distribution

$$
f_{0}=\frac{n_{h} H\left(v_{B}-v\right)}{v^{3}+v_{I}^{3}} \exp \left(-\left\langle\Psi_{n}\right\rangle / L_{h}\right)
$$

for passing particles, $\left\langle\Psi_{n}\right\rangle \approx \Psi_{n}$
for trapped particles, $\left\langle\Psi_{n}\right\rangle \approx-R_{0} P_{\zeta} / q$

$n_{h}=0.015 n_{0}, L_{h}=0.5, v_{B} / v_{T}=20, v_{I} / v_{T}=5.8$.

