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A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode

frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In

particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The

radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high

energetic particle pressure and large safety factor. These results are consistent with the recent experi-

mental observation of the beam-driven n ¼ 0 mode in DIII-D.
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Understanding of energetic particle physics in tokamaks
is of fundamental importance for burning plasmas. Recent
experimental results [1–3] indicated energetic particles can
drive an n ¼ 0 mode unstable with frequency comparable
to that of geodesic acoustic mode (GAM) [4]. Here it is
shown analytically and numerically that energetic particles
can indeed excite a new GAM-like mode via free energy
associated with velocity space gradient in energetic parti-
cle distribution. More importantly, it is shown that both the
mode frequency and mode radial structure is determined
nonperturbatively by energetic particle kinetic effects.
Thus, the new mode, to be called EGAM (for energetic-
particle-induced GAM), is intrinsically an energetic parti-
cle mode. As such, EGAM is qualitatively different from
the global geodesic acoustic mode (GGAM) [1,2] which is
a pure MHD mode. EGAM also is qualitatively different
from the usual GAM observed in the edge region of
tokamak plasmas [5]. While the usual GAM is nonlinearly
driven by plasma micro-turbulence and is highly localized
near the edge of plasmas [5], the EGAM is linearly driven
by energetic particles and is located in the tokamak core
with a much wider radial width. It should also be noted that
the kinetic effects of thermal ions on stable GAM had been
studied in previous work [6–11]. In contrast, this work
considers the energetic particle excitation of the new
EGAM. The new mode is important since it can degrade
energetic particle confinement as shown recently in the
DIII-D experiments [3]. The new mode may also affect
the thermal plasma confinement. Finally, the new mode
could be excited in burning plasmas since auxiliary heat-
ings such as neutral beam heating can produce highly
anisotropic energetic particle distribution.

The equation for radial electric field Er of n ¼ 0 GAM-
like mode is given by
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Er ¼ �hGðr; �Þð�Pk þ �P?Þi; (1)

where the bracket h i denotes the flux surface average and
Gðr; �Þ ¼ �ðB�R=JB

3Þð@B=@�Þ, � is plasma mass den-

sity, B is the equilibrium magnetic field strength, �Pk and

�P? is the perturbed parallel and perpendicular pressure,
respectively, B� is the toroidal magnetic field, R is the

major radius, J is the Jacobian of the flux coordinates (r, �,
�) with r being the radial flux variable (or minor radius).
Equation (1) is derived from the flux surface average of the
vorticity equation. For simplicity, the electrostatic approxi-
mation is assumed. The ideal Ohm’s law is also used along
with the Chew-Goldberger-Low form of the perturbed
stress tensor �P ¼ �P?Iþ ð�Pk � �P?Þbb.
A hybrid model is used for the stress tensor response,

namely, fluid model for thermal plasmas and kinetic model
for energetic particles. Thus for thermal plasmas, �P?th ¼
�Pkth ¼ �Pth and
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�Pth ¼ 2�Gðr; �ÞPthEr; (2)

with the subscript th denotes the thermal species and � is
the coefficient of specific heat. On the other hand, the
perturbed energetic pressures are calculated kinetically as
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where the subscript h denotes the energetic particle spe-
cies. The perturbed particle distribution �f satisfies the
following drift kinetic equation:
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(4)

where f ¼ fðP�; E;�Þ is the equilibrium distribution as

function of constant of motion P� the toroidal angular

momentum, E the particle energy, and � the magnetic
moment. Note that there is only dE=dt term in Eq. (4)
because dP�=dt ¼ 0 for axisymmetric modes.

Equations (1)–(4) form a self-consistent kinetic-fluid
hybrid model for EGAM including kinetic efforts of ener-
getic particles.
The drift kinetic equation can be solved by integrating

along the unperturbed orbit and the solution is given by
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with

H�
p ð�rÞ ¼ 1

�b

Z
dt0Kð�; r0; �0ÞErðr0Þ; (6)

Kð�; r0; �0Þ ¼ ð2��BÞGðr0; �0Þ sinðp!bt
0Þ; (7)

where �r is the particle orbit average of r, �b is the particle
orbit period (transit period for passing particles and bounce
period for trapped particles), !b ¼ 2	=�b is the orbit
frequency, � ¼ �B0=E is the particle pitch angle with
B0 being the magnetic field strength at the magnetic axis,
� is the sign of parallel velocity, p is an integer represent-
ing orbit harmonics, and t� is the orbit time integral given
by t�ð�Þ ¼ �

RðJ=vkÞd� for passing particles.

By combining Eqs. (1)–(5), the following integral eige-
nequation is obtained for n ¼ 0 electrostatic modes with
effects of energetic particles:
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where p sums over positive integer. Note that because of
orbit integral in Eq. (6), Eq. (8) is an integral equation
which couples different flux surfaces due to finite orbit
width of energetic particles.

In the limit of zero orbit width for energetic particles, the
integral mode equation becomes the local dispersion rela-
tion defined on each flux surface as

!2 ¼ !2
GAM þ hPkh þ P?hi

B2
0R
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where

!2
GAM ¼ h4�G2ðr; �ÞPthi

h�jrrj2=B2i ; (10)
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where Qh is an order of unit kinetic integral depending
only on!=!b0 and details of energetic particle distribution
function. Here!b0 � v=ðqRÞ is the orbit frequency at� ¼
0. For large aspect ration low beta tokamak equilibria with
circular flux surfaces, J � rR, jrrj � 1, Gðr; �Þ �
� sinð�Þ=ðB0R0Þ. Then the GAM frequency given by

Eq. (10) reduces to the well-known formula !GAM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Pth=�

p
=R0 for q � 1. Also in this limit, the p ¼ 1

term is dominant over other terms.
For energetic particles, !b0 is typically comparable or

larger than !GAE. This allows wave particle resonances.
Depending on details of particle distribution function, the
real part of Qh can be either positive or negative for
energetic particles. Thus, energetic particles can often
contribute negatively to the mode frequency. Also, more
than one mode can exist. Up to three modes have been
found. Finally, for an anisotropic distribution, energetic
particles can destabilize the GAM mode due to @f=@E >
0. This has been demonstrated by numerical solution of the
dispersion relation as shown below.
The following anisotropic slowing-down distribution

function is used for energetic particles in this study:

f ¼ 1

v3 þ v3
crit

exp

�
� P�

e��
�

�
���0

��

�
2
�
; (13)

where f has peaked distribution in P� with �� being the

width, a slowing-down distribution in velocity and a
peaked distribution in the pitch angle � with �� being
the width. Figure 1 shows the real part (top) and imaginary
part (bottom) of Qh for an anisotropic pitch angle distri-
bution function with �� ¼ 0:2 and �0 ¼ 0:5. The results
are obtained at 
 ¼ r=R ¼ 0:16 of an tokamak equilibrium
with circular flux surfaces at R=a ¼ 3. The results show
ReðQhÞ< 0 for 0:23<!=!b0 < 0:72. Thus in this fre-
quency region, the energetic particle effects actually re-
duce the mode frequency. Furthermore, ImðQhÞ> 0 for
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FIG. 1 (color online). Real (top) and imaginary (bottom) part
of Q as function of mode frequency.
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0:0<!=!b0 < 0:49 for this case. Thus, the energetic
particles can destabilize the EGAM due to anisotropic
distribution (i.e., driven by @f=@E > 0). The dispersion
relation can be solved perturbatively when the fast ion
pressure is much smaller than the thermal pressure.
When the energetic particle pressure is comparable to the
thermal pressure, the dispersion relation has to be solved
nonperturbatively. The eigenfrequencies can be expressed
in terms of two dimensionless parameters: Z ¼ !b0=!GAM

being the ratio of particle orbit frequency and the GAM
frequency, and Y ¼ hPkh þ P?hi=2�Pth being the ratio of

energetic particle pressure and thermal plasma pressure.
Figure 2 plots the real part (top) and imaginary part (bot-
tom) of eigenmode frequencies as a function Y at Z ¼ 1:0
for the parameters of Fig. 1. The corresponding results for
Z ¼ 1:8 are plotted in Fig. 3. It is observed that, for small
energetic particle pressure (i.e., small Y), only one mode
(red squares) can exist and this mode transits smoothly to
the conventional GAM as Y approaches zero. Furthermore,
these results show that there is a critical energetic pressure
fraction above which two new modes emerge (black dia-
monds and blue circles). The mode frequencies and the
stability of the new modes depend critically on the value of
Z. In fact, it is found analytically and numerically that
there exists a critical threshold Z ¼ Zcrit (Zcrit ¼ 1:4 for
parameters of Fig. 1) such that for Z < Zcrit, the newmodes
start at the mode frequency well below the GAM frequency
!GAM(see black diamonds and blue circles in Fig. 2). On
the other hand, for Z > Zcrit, the new modes start at the
mode frequency well above the GAM frequency (see

Fig. 3). Interestingly, the value of Z is also critically
important for the mode which starts from the conventional
GAM frequency (red squares in Figs. 2 and 3). The mode
frequency of this mode increases with increasing Y for Z <
Zcrit (see Fig. 2). For Z > Zcrit, the mode frequency de-
creases with increasing Y (see Fig. 3). Finally, it is found
that there exists only one unstable mode for the parameters
of Fig. 1. For Z < Zcrit, one of the new modes is unstable
(blue circles) when energetic particle pressure exceeds a
threshold (i.e., !i > 0 for Y > 0:26 in Fig. 2). For Z >
Zcrit, the GAM mode can be destabilized by the energetic
particles (see red squares in Fig. 3).
It is important to relate these local results to the experi-

mental situation. First, the importance of the parameters Z
has been shown above. It can be estimated as Z2 �
Eh=ð2:75q2TÞ where Eh is the energetic particle energy,
q is the safety factor, and T is the plasma temperature. For
typical parameters of neutral beam-heated reversed shear
plasmas, Z is comparable to Zcrit. Second, the unstable
mode’s frequency is always below the GAM frequency
regardless of the value of Z. When the energetic particle
pressure is comparable to the thermal pressure (i.e., Y �
1), the unstable mode frequency is substantially below
GAM frequency and the growth rate can be very large.
These results are consistent with the recent experimental
observations in DIII-D [3].
Now consider the case where effects of finite orbit width

of energetic particles are retained. In general, the integral
equation given by Eq. (8) can only be solved numerically.
To make analytic progress, the particle orbit width is
assumed to be much smaller than the mode radial width.
In this limit, a Taylor series expansion can be made for
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FIG. 2 (color online). Real and imaginary part of the eigen-
frequencies as function of Y ¼ hPkh þ P?hi=2�Pth for Z ¼ 1:0.
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FIG. 3 (color online). Real and imaginary part of the eigen-
frequencies as function of Y ¼ hPkh þ P?hi=2�Pth for Z ¼ 1:8.
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Erðr0Þ in Eq. (6) as Erðr0Þ ¼ Erð �rÞ þ ð@Er=@�rÞ�rþ
0:5ð@2Er=@�r

2Þð�rÞ2 where r0 ¼ �rþ �r with �r being the
orbit-averaged radius and �r being the drift orbit deviation
from �r. Then, another Taylor expansion can be made in
Eq. (8) using �r ¼ r� �r. Note that the flux average in
Eq. (8) is to be performed at fixed r. After some algebra,
the following eigenmode equation is obtained:

d

dr

�hPkh þ P?hi
�R2

ðq�hÞ2W
�
!

!b0

��
d

dr
Er

¼ �ð!2 �!2
EGAMÞEr

(14)

where !2
EGAM is given by the right-hand side of Eq. (9), �h

is the Larmor radius of the energetic particles, W is an
order of unity kinetic integral and is a function of !=!b0.
Note that q�h is approximately the drift orbit width of the
energetic particles. Depending on details of particle distri-
bution,W can be either positive or negative. ForW > 0, the
mode propagates in the region of!>!EGAM and forW <
0, the mode propagates in the region of !<!EGAM. Near
!2 �!2

EGAM ¼ 0, the solution of Eq. (14) is given by Airy
function. Thus, the radial width of EGAM scales as

�r� ð�h=�thÞ1=3L1=3
! ðq�hÞ2=3; (15)

where L! is the radial scale length of!EGAM. Note that the
radial orbit width is mainly determined by the drift orbit
width �q�h of the energetic particles and can be fairly
large for DIII-D reversed shear plasmas.

Analysis of Eq. (14) indicates the existence of a global
EGAM with radial scale length given by Eq. (15). Hybrid
simulations have been carried out using Eqs. (1)–(4). In the
simulations, the perturbed thermal pressure is evolved
using Eq. (2) and the perturbed energetic particle pressures
are evolved according to Eqs. (3) and (4) using PIC simu-

lation method. The parameters of Fig. 1 are used along
with central safety factor qð0Þ ¼ 5:0, the minimum q ¼
qmin ¼ 4:0 at r=a ¼ 0:4, plasma pressure profile Pth ¼
Pthð0Þð1��Þ2 with � being the normalized poloidal
flux. The plasma density profile is uniform. For pa-
rameters of energetic particles, �h=a ¼ 0:016, Z ¼
!b0=!GAEð0Þ ¼ 1:42, Y � 1, and�� ¼ 0:3. Only counter
passing particles are included. Figure 4 shows the eigen-
mode structure of the perturbed radial electric field of an
unstable global EGAM obtained from the linear simula-
tion. The calculated mode frequency and growth rate are
!r=!GAEð0Þ ¼ 0:63 and !i=!r ¼ 0:5. The calculated
mode is clearly global. This result confirms the existence
of global EGAMs. Details of simulation results will be
presented elsewhere.
In conclusion, a new energetic particle-induced geodesic

acoustic mode (EGAM) is shown to exist. The mode is
driven by velocity space anisotropy in the energetic parti-
cle distribution function. The mode frequency and mode
structure are determined nonperturbatively by energetic
particle kinetic effects. In particular it is found that the
EGAM frequency is substantially lower than the standard
GAM frequency. The radial mode width is mainly deter-
mined by the energetic particle drift orbit width and can be
fairly large for high energetic particle pressure and large
safety factor. These results are consistent with the recent
experimental observation of the beam-driven n ¼ 0 mode
in DIII-D [3].
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FIG. 4. The perturbed radial electric field versus radius of a
global EGAM.
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