Generalized Fjgrtoft argument
for the gyrokinetic dual cascade



Outline

 The inverse cascade and Fjgrtoft’s argument for fluid
turbulence

— Some history, some context

— Thought experiment: Transfer among 3 scales, and among
arbitrarily many

— Centroids

 Two dimensional gyrokinetics

— Phase-space spectrum
— Generalised Fjgrtoft argument
— Three flavors of cascade behavior
e Zonal flows and the inverse cascade

— Generalized Hasegawa Mima
— Gyrokinetics
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Early history of the “inverse cascade”

Onsager, L. (1949), Nuovo Cimento, Suppl. 6, 249:

Statistical equilibrium of point vortices — negative temperature
states and explanation of persistent large-scale motions in 2D fluid
flow

Batchelor, G. K. (1953), The Theory of Homogeneous Turbulence:
Identifies the cause of inverse energy transfer: simultaneous
conservation of enstrophy and energy. Predicts that the
motion of the energy “centroid” will be toward progressively
larger scales.

Fjortoft, R., (1953), Tellus, 5, 225 (Also see Merilees and H. Warn, 1975):
Precise and general limits on the spectral redistribution of energy. Does
not present a theory of cascade. Does not make predictions or
assumptions about equilibrium or non-equilibrium stationary states.

Kraichnan, R. H. (1967), Phys. Fluids, 10, 1417 (Also Leith, Batchelor):
Calculates statistical equilibrium (following T.D. Lee), revisits Fjortoft
argument and advances the concept of a “dual cascade” with two
inertial subranges with distinct power-laws.



Figrtoft: three-scale energy transfer
‘Relationship between spectra: Z(k) — k2E(k) ‘
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follows: No single of the three components
can in this case represent a source or a sink
for the both two remaining ones unless this
is represented by a scale intermediate between
the scales of the two other components.




Arbitrarily many scales
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A statement of Fjortoft’s general result

* The fraction of energy, F(t), that can be found
above some k' > k is bounded:




Centroid Inequalities

Energy centroid:

_ [ kE(k)dk
[ E(k)dk
Enstrophy centroid:
_— [ K3E(k)dk
[ k2E(k)dk
Invariant wavenumber:

k=+\/Z/E

[Nazarenko, Quinn, 2010. IUTAM
Symposium on Turbulence in the
Atmosphere and Oceans, pp. 265]

Cauchy-Schwarz Inequality:
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Gyrokinetic “phase space cascade”:
Physics of nonlinear phase mixing




2D Gyrokinetics:
Nonlinear phase-mixing and not much

else.
dg _ 3 _
a+{<¢>R7 g} ={C)r a’v{g), = (1+7)p—Top
o n d2R 92
Gen. Free Energy”: W, =27 vdv/ v 2k,
1 [ d°r

“Electrostatic Energy”: b= 9 / v [(1 + 7)902 — SOFOSO]

*[G. G. Plunk, et al., (2010). J. Fluid Mech., 664, pp 407-435]



Phase-space spectrum

Hankel & Fourier Transform:

gk, p) = ;ﬂ / R / vdvJy(pv)e” ®Bg(R, v)




Spectral Transfer

(o ” d2R 92
Free Energy”: W, =27 vdv/ v 2k,
1 [ d°r
“Electrostatic Energy”: E = 5 / a (1+7)p” — Loy
k
Constraint: E(k) = %
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Inverse cascade of E

log10 [W, (k,,p) / W] @ t=0.0




Flavors of dual cascade:
Local forward, Nonlocal inverse
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Flavors of dual cascade:
Local forward, Local inverse
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Flavors of dual cascade:
Dual forward
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“Sub-Larmor damping”



Zonal flows
G. K. Vallis., Atmospheric and

Williams, G. P. 1978. J. Atmos. Sci. 35, 1399—-

1426.
Oceanic Fluid Dynamics, pp. 381

See also

Anisotropic inverse cascade by the linear “B-effect” or “critical balance” in the inverse
cascade
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Zonal flow regulation by dual
“cascade” (k’p% << 1)

A

Orthogonalize: © = ago + bg1 Y = bgy — agi

Free energy can be re-expressed:

Wg:WO—I—W1+W2—|—...
=Wy + Wi H Wy + ...

Wy =W, Wi =Wy, Wh=W,, ...

Effective wavenumber that governs dual cascade:
2 __
¢ = W,(k)/E(k)

2~ {k2 for zonal flows

T for non-zonal fluctuations

[Plunk, Tatsuno, PRL 106, 165003 (2011)

Fjortoft Argument:
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non-zonal




Two-field gyrofluid model of ITG

turbulence
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Hand-tuned linear model: <

r
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w =

T,
P

These linear operators model ITG
instability, diamagnetic frequency,
models of kinetic damping and
collisional dissipation.

% (’U* + G\/(k/kw)2 - 1) — ivp(k)

= Ro[sin(¢o) v/ (k/kw)? — 1 + cos(¢o)]




Steady State Energies vs. R,
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Electrostatic Potential

R, = 0.85

y (poloidal direction)

X (radial direction) X (radial direction)



Concluding Remarks

Nonlinearity in Gyrokinetics conserves two
guantities

Dual cascade can induce upscale or downscale
transfer of (electrostatic) energy, depending on
initial excitation

— Distinguishes GK turbulence from fluid turbulence
Nonlinear zonal flow regulation by dual cascade
— Appears by simple arguments in GHM turbulence

— More sophisticated in gyrokinetics — direction of
energy flow can be reversed!

Open question: How do we tailor the drive to
control the dual cascade (control transport)?



