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Goals and motivation

Goal: To find the generic analytical expression for the PDF
tails.

The tails are often qualitatively different from a Gaussian
distribution. The method used Is the so-called instanton
method.

Motivation: There are theoretical and experimental evidence
that for understanding transport (involving many scales and
amplitudes) a probabilistic description is needed.

Intermittenct systems are badly described by mean field theory
and the turbulent transport coefficients are invalid.

Note that the term "intermittent” will be used for all
phenomena that exhibit strong non-linear features.
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Probability distribution function

 Near the center, the PDF is
often close to Gaussian but
reveals a significant deviation
from Gaussianity at the tails
(intermittency - the events
contributing to the tails are
strongly non-linear.).

« Rather than a transport
coefficient, a flux PDF is
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Normalized Heat Flux

Radial velocity PDF measured at TCV, Garcia EPS2006
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Previous results — Blob density PDF
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A coupled drift-wave zonal flow system

Anderson et al submitted to NF 2008

A coupled system of drift waves ¢, and zonal flows ¢, (& is the
X-coordinate and C is the time-coordinate.
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Without the influence of ZF the PDF tails of momentum flux is oC €
Also found experimentally in CSDX by Z. Yan APS2007

18/02/2009 Johan Anderson University of 6
Sheffield



PDFs of fluctuations vs ZF dominated

plasma
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Instanton method

Kim and Anderson PoP in press (2008)

t A

The instanton method is a non- N
perturbative way of calculating
the Probability Distribution
Function tails.

The PDF tail is viewed as the
transition amplitude from a —=x

. . . Xi X
state with no fluid motion to a !
final state governed by the
coherent structure. :

. ¢ .
The creation of the coherent , e
structure is associated with the (ot l';oming ) observables
bursty event. ] ‘ e ‘
The Opt|mum path |S fOUﬂd by conjugate
using the saddle-point method. variable
Y
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Coherent structures

Q
A,

« Coherent structures are W/ NN

major players in transport 20

dynamics through the
formation of avalanche-like ™
events with large amplitude. »

 There are several examples j
008 ff /s
of coherent structures (c.f.

modon or bipolar vortex 0
soliton) to the non-linear
governing equations. -0

« Strong theoretical evidence - 0 R .
that a probabilistic ! ‘

formulation is needed to

characterize the problem. Left:Dastgeer IEEE TPS 2003, Right:
Waelbroeck et al PPCF 46 1331 (2004)
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Model Equations

Time evolution of the potential is governed by an N order
Interaction term.

%, i) — L
8t+N(¢)_f N () < ¢

The forcing iIs assumed to be Gaussian with
a short correlation time:

(f(xt)f(X',t") =5(t—t)x(x—X)

(f)=0
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The model for calculating the PDF talls

The PDF of the mt" moment can be defined as:

P(R) =(5((v,v,)—R)) = j dAe"™(—iAv,v, ) = j de™I

The integrand can be re-written as a path-integral:

7 ~—S
|, = [DgDge ™
Here, the effective action can be written:

_ +(09
S, = |jo|xo|t¢(at + N(4))
1

+ E:dxdx’dtﬁ (X) (X = X" (X))
+i4 [ dxdtM (#)S (1) (X — X,) M (4) oc 4"

The forcing k is a Gaussian with a delta-correlation in time.
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Instanton (saddle-point) solutions

« The path-integral will be solved using a saddle point method.

« Assuming that the coherent structure has a spatial profile ¢,(x) and a
temporal evolution F(t) and similarly for the conjugate variable.

P(X,1) = gy (X)F (1)

@ (X, 1) = g (X) (1) -
Constants c are projections on
The action can be recast as: the conjugate structures

S, =—i[duc,(F+c,F?) e = [dxd (g ()

1 ) C,C, = : dX¢_O(X)¢On(X)
+— j dtu c,c, : _
2 C,C5 = | dxdy ¢ (X)x (X = y)dy (¥)
+iA[dtF "5 (t)c,c, i, = gl (05 (x - %,)
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Steepest descent method or saddle point integral

Assume the function f has a unique global maximum at x,

~M | F"(xg)|(x=%0)? /2 27T As M—
_[dxe ME er (xO)J‘e 0 0 dx = 4 er (Xq)
M| f"(x,)

In the case of the path-integral we have a similar situation, however instead
Stationary points we must look for functions that optimize the action.
Consider the functional derivatives:

S, _, 8
oF ou
This gives us two equations in F and y, respectively

: . ]

F+C,F =-ICc,u F(-~) =0 and

: _ _ t>0)=0
f1—nNC,F" " 1 =—-2c,mF "5 (t) HZ0)
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Instanton solutions

We find the solution:
F™ =F, " +c,(-n+1t
F n-m+1 ql

A —

To calculate the path-integral we now have to evaluate the

saddle point action (input the solution above into the action).

S, =-i ~dt,uC1(F' +c,F") +%Idtyzclcg

+iA[ dxdtF"S(t)c,c,

. 2
= jctcl(F +c,F") +idR,"cc,
_ Q/ﬂt(n+1)/(n—m+1)
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The PDF tails + Corrections

To determine the PDF tails we have to evaluate the A integral:

_ (n+1)/(n—m+ N
P(§)=Idﬂue QAT F(A) = —AE + QA

And find the saddle point:
(n—=-m+1)/(n+1)
(n—-m+1)

Q(n+1)

This gives the PDF tails as:

P(é) oC §(n+1_2m)/(Zm)e—C§(”+1)/m

The first factor comes from the Gaussian integral correction in the
steepest descent method.
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PDF tail of a general moment

The PDF tails of moment (m) and with the order of the highest
non-linear interaction term (n)

n+1

P(Z) oc exp(-&Z°) S=T

Examples:
1. Linear system with PDF tails of first moment — Gaussian s=2.

2. Linear system with PDF tails of flux (n*v) — s=1

3. Hasegawa—Mima system with PDF tails of momentum flux — s=3/2

The PDFs tails can be calculated provided that the integral mean value

over the considered coherent structure is non-zero. A coherent structure

For the HM system is the modon. The mean value of Reynolds stress

over this structure is zero. This is solved by having several coupled modons.
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Threshold diffusion

PDF of Ux, threshold diffusion

1.0000F = T
: A forced model of shear flow that
[ Been used for a wide range of
0.1000F E .
5 1 phenomena (solar/atmospheric)
L 0.0100F i ou, 52
S é D(uu,)+ f
_ L oo (D(u)u,)
0.00105— ; D(u) — V—l—ﬂUf
0.0001 1 HL Liu J. Atmos. Sci., 64, 579-593, 2007.

. . —cU
Using the previous result we find the PDF: P(£)oce -

A comparison of numerical calculations and the estimated PDFs. In the
numerical calculations a Gaussian forcing is used. First an extreme case:
Apply forcing only when |u,| < u, to allow for relaxation is faster than the

disturbance. Result PDF malnly Gau53|an'
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Quadratic diffusion

Submitted to PRL 2008
PDF of Ux, quadratic diffusion

1.0000E
i Solid line: Non-linear numerical

calculation.
Dotted line: Gaussian fit
Dashed line: A fit to the PDF.

P(£) oc e

The same PDF may be found
Using the Fokker-Planck
PDF equation.

0.1000f -~
5
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Close to 0 the PDF is close to Gaussian whereas the tails are strongly
intermittent.

There Is a cross-over between occurs roughly at the expected critical
gradient u,. = sqrt(v/p) = 0.98.

XC —
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Future work

* Work out corrections to some specific physical
equations (HM, Burgers etc)

* PDF tails in an electromagnetic model.

» Self consistent forcing. No external forcing
iInstead use the linear instability as the driving
force.

 PDF tails of multi-structures and multi-
Instantons.

 PDF tail for L-H transition.
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Summary

We have found the PDF tails for general n (degree of the
highest non-linear term) and m (moment) as well as
subleading corrections coming from the saddle point
method.

By calculating PDFs we may easily discriminate between
models and experiments. We need only to know the
slope in the log-log plot.

We have presented a statistical theory of self-
organisation of shear flows by a simplified non-linear
diffusion model for the shear flow.

We have compared the PDF tails from numerical
calculations and two analytical methods and found very
good agreement.
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