noble analysis of radial electric field formation, turbulence transport, and H-mode transition based on the gyrocenter shift (GCS)

[PPCF, 51, 065023, 2009]

Kwan Chul Lee

University of California at Davis

NSTX research team

May 21, 2009

Introduction

cross field plasma transport

high confinement mode (H-mode)

Gyrocenter shift due to charge exchange

Retrograde motion of arc cathode

A CATHODIC ARC REGION B. POSITIVE COLUMN C. ANODIC ARC REGION cathode spot moves opposite (retrograde) direction under B-field
 retrograde motion was noticed by Stark (1903)
 no satisfactory explanation despite numerous attempts.

Generalization for high collision case

$$\mathbf{v}_{d} = \frac{1}{1 + r_{L}^{2} / \lambda_{cx}^{2}} \left(\frac{E}{B} - \frac{\nabla p}{qBn_{i}}\right)$$

- only ions have longer λ_{cx} than \textbf{r}_{L} contribute to gyrocenter shift
- <u>number of ions that contribute</u> total number of ions

$$= e^{-r_L / \lambda_{cx}}$$

general formula for the gyrocenter shift

$$J_{x}^{GCS} = \frac{m_{i}n_{i}n_{n}}{B} < \sigma_{cx}v_{i} > \left[\frac{1}{1+r_{L}^{2}/\lambda_{cx}^{2}}\left(\frac{E}{B}-\frac{\nabla p}{qBn_{i}}\right) + \frac{T_{i}\nabla n_{n}}{qBn_{n}}e^{-r_{L}/\lambda_{cx}}\right]$$

Calculation of electric field in arc discharge

- no background E-field
- constant n_i (5x10²²/m³)
- constant T_i (0.5 eV)
- B = 0.1 T
- gas pressure : ~100 Torr (Argon)
- gap :16.5 mm
- n_n is an exponential function with its gradient approach zero at middle of the discharge
- reversed electric field is formed
- E_x vanishes when

 $n_n > \sim 10^{21}/m^3$

► cathode sheath : massive ionizations take place (~µm) where rapid decrease of neutral and increase of ion

► higher neutral density → higher column electric field (constant current)

 \Rightarrow high gas pressure \rightarrow positive electric field in front of cathode low gas pressure \rightarrow negative electric field in front of cathode

negative electric field (seems unnatural) : gyrocenter shift is a process of putting ions in a direction which is independent of electric force

Comparison of calculation with experiment 800 -6000 Torr) 700 B=0.1 T, Ti=0.5 eV 300 Torr 4000 drift velocity (m/sec) 00 Torr 600 Torr 2000 gas pressure calculation/39 experiment [10] 0 0.05 T ···· 0.05 T 500 -2000 0.075 T 0.075 T 400 -0.1 T 0.1 T -4000 -6000 300 [Murphree & Carter, 1969] 2.7 2.8 2.5 2.6 2.9 3.0 X (mm) 200 1/20 of neutral decay length retrograde rotation 00 Lorentz rotation $\frac{E}{B}$ \mathcal{V}_D $\overline{1+r_I^2/\lambda_{cr}^2}$ -20 30 -10 -30 40 20 10 40 drift velocity/39, arc rotation speed (m/sec)

[K.C. Lee, PRL, Vol 99, 065003 (2007)]

$$J_r^{GCS} = en_i \frac{r_{Li}}{\lambda_{i-n}} \left(\frac{E}{B} - \frac{1}{eB} \frac{\nabla P_i}{n_i} + \frac{kT_i}{eB} \frac{\nabla n_n}{n_n}\right)$$

► J_r and E_r saturate before $J_r=0$

 E_r saturates when ion movement is same as electron movement (ambipolar electric field

=> classical diffusion)

- only for ideal case of no density fluctuation
- turbulence induces real condition of E_r saturation

Turbulence induced diffusion and E_r saturation condition of GCS

⇒:V _{ĔxB}	$A (n(x) n(x+\lambda_{d}))$ $\downarrow + + + + + + + + + + + + + + + + + + +$	Turbulence induced diffusion of particles
	$ \begin{array}{c} $	$\eta \equiv \frac{\widetilde{n}}{n}, n' \equiv \frac{\partial n}{\partial x} < 0$
	X	$x + \lambda_t$
[A]	$n_{i,e}(x) \equiv n_{i,e}$	$n_{i,e}(x+\lambda_t) = n_{i,e} + \lambda_t n'_{i,e}$
[B]	$n_{i,e} - \eta n_{i,e}$	$n_{i,e} + \lambda_t n_{i,e}' + \eta n_{i,e}$
[C]	$n_{i,e} - \eta n_{i,e} + \eta n_{i,e} + \eta \lambda_t n_{i,e}' + \eta^2 n_{i,e}$ $\approx n_{i,e} + \eta \lambda_t n_{i,e}' = n_{i,e}(x) + \eta \lambda_t n_{i,e}'$	$ \begin{array}{l} n_{i,e} + \lambda_t n'_{i,e} + \eta n'_{i,e} - \eta n'_{i,e} - \eta \lambda_t n'_{i,e} - \eta^2 n_{i,e} \\ \approx n_{i,e} + \lambda_t n'_{i,e} - \eta \lambda_t n'_{i,e} = n_{i,e} (x + \lambda_t) (\eta \lambda_t n'_{i,e}) \end{array} $

► net movement of one cycle is $\eta \lambda_t \nabla n$: same result from L-R-L and R-L-R cycles

diffusion takes place from high density region to low density region

-

⇒:V _{ĔxB}	$A (n(x) n(x+\lambda))$ $(x+\lambda)$ $n(x) V_{\tilde{E}xB} B$	<u>Turbulence induced diffusion</u> of charge
/	$ \begin{array}{c} $	$\eta \equiv \frac{\widetilde{n}}{n}, n' \equiv \frac{\partial n}{\partial x} < 0$
	x	$x + \lambda_t$
[A]	$\rho(x) = e(n_i - n_e) \equiv \rho$	$\rho(x+\lambda_t) = \rho + \lambda_t e(n'_i - n'_e)$
[B]	$ ho - \eta ho$	$\rho + \lambda_t e(n'_i - n'_e) + \eta \rho$
[C]	$\rho(x) + \eta \lambda_t e(n'_i - n'_e)$	$\rho(x+\lambda_t) - \eta \lambda_t e(n'_i - n'_e)$

► turbulence induced ion and electron diffusion : $\eta \lambda_t \nabla n$

- turbulence induced charge diffusion : $-\eta \lambda_t \nabla \rho$
 - ion and electron move toward boundary => <u>diffusion</u>
 - charge (ρ) moves toward core => <u>dilution current =></u> <u>Saturation by J^{GCS}</u>

Modified Boltzmann relation

$$F = J_i^{GCS} \times B = m_i n_i v_{i-n} \left(\frac{\widetilde{E}}{B} - \frac{1}{eB} \frac{\nabla P_i}{n_i} + \frac{kT_i}{eB} \frac{\nabla n_n}{n_n}\right) \approx 0$$

[Ritz, TEXT, 1989]

 $e\widetilde{E} - kT_i \frac{\nabla n_i}{n_i} + kT_i \frac{\nabla n_n}{n_n} \approx 0$ $(-\frac{\nabla n_n}{n_n} \approx \frac{1}{L_{\widetilde{n}}})$ $\underline{e\widetilde{E}} - \underline{1} = \underline{\nabla n_i}$ $\overline{kT_i}$ $L_{\widetilde{n}}$ n_i $\frac{\widetilde{n}}{n} = \frac{e\widetilde{E}\lambda_t}{2kT_i} - \frac{\lambda_t}{2L_{\widetilde{n}}}$ $D = \frac{2}{\pi} \eta (\eta + \frac{\lambda_t}{2L_{\tilde{u}}}) \frac{kT_i}{eB}$

2008

Data

NSTX

 $D = \frac{2}{\pi} \eta^2 \frac{kT_e}{e^{P}}$

L/H transition by critical Reynolds number

$$\operatorname{Re} = \frac{2}{\pi} \eta^2 \frac{B}{m_i n_i (\sigma_{i-n} n_n)^2 \upsilon_{\perp}} \nabla \rho$$

Re > Re* : turbulent flow Re < Re* : laminar flow</p>

(Re*~2400)

- ► turbulent flow (L-mode): high η laminar flow (H-mode): low η
- plasma heating & neutrals
 => Reynolds number
 => L/H power threshold
- P_{th} dependence on neutral density , <u>isotopes</u>
 => agrees to experiments

fast and slow changes of H-mode transition

$$\operatorname{Re} = \frac{2}{\pi} \eta^2 \frac{B}{m_i n_i (\sigma_{i-n} n_n)^2 \upsilon_{\perp}} \nabla \rho$$

Re =
$$\frac{2}{\pi} \eta^2 \frac{B}{m_i n_i (\sigma_{i-n} n_n)^2 \upsilon_{\perp}} \nabla \rho$$
 (Re -> Re*~2400)

