The eftect of plasma triangularity
on turbulent transport:

i

modelling TCV experiments by
linear and non linear gyrokinetic
simulations




Motivation

Negative triangularity improves electron heat
transport in low density L-mode plasmas
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OUTLINE

Electron heat transport
e Linear analysis
e Non-linear simulations

* Insight on particle drifts
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Instability of trapped and passing particles
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Trapped Electron Mode dominated




[.inear simulations
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Stabilizing effect of triangularity and elongation
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Power balance analysis vs non—linear, collisionless GS2




Non linear simulations

Power balance analysis vs non—linear, collisionless GS2
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Non linear simulations

Power balance analysis vs non—linear, collisionless GS2
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TEM and collisionality
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No influence at high collisionality

At low collisionality; its effect depends on triangularity




Phase space
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Reduced difference between barely passing and barely trapped

electrons as collisionality is increased




Particle drifts

TEM are destabilized by the resonance between the
fluctuation and the toroidal precessional drift of trapped
electrons
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Particle drifts
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Resonance’

Barely Trapped
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Resonance?

Barely Trapped
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At which energy the instability is more effective?
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Conclusions

® negative triangularity stabilizes L-mode TEM
dominated plasmas through perpendicular
drift and effective perpendicular size of
perturbation

e Non-linear terms are important for
quantitative comparisons

e Interplay of collisionality and triangularity

e Toroidal processional drift and triangularity:
peculiar effect in the phase space

e Finite penetration length?



