
OASCR Multiscale Mathematics Research and Education Project
 Multiscale Gyrokinetics for Fusion Plasmas*

W. W. Lee, S. Ethier, R. A. Kolesnikov, H. Qin, E. A. Startsev and W. X. Wang
Princeton Plasma Physics Laboratory 

Princeton University, Princeton, NJ 08543

D. E. Keyes* and M. Adams
Department of Applied Physics and Applied Mathematics

Columbia University, New York, NY 10027

X. Tang*
Plasma Theory Group, Theoretical Division

Los Alamos National Laboratory, Los Alamos, NM 07545 

Presented at 
PSACI PAC Meeting

June 2008

*This is also a pending project on Multiscale 
Mathematics for Complex Systems  



Multiscale Fusion Plasmas on MPP Platforms
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• Fusion physics a fertile ground for multiscale mathematics -- span more than eight orders of 
magnitude in spatial and temporal scales for tokamaks.

• Simulation algorithms based on finite-size particles are the first examples of mulitiscale 
mathematics based on the Debye shielding concept 
⇒ relaxing the original requirement for the numbers of particles

Multiscale Mathematics for Fusion Plasmas

• Gyrokinetic formalism is another example of multiscale mathematics 
based on the use of gyrokinetic ordering 
⇒ orders of magnitude improvement in computational requirements 

due to the presence of polarization shielding and rotating charged rings 
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by making collisions as subgrid phenomena.

• Magnetic coordinates (ψ, θ, ζ) and field line following mesh (ψ, α, ζ) 
also greatly improve the computational requirements for fusion plasmas 
and are another example of multiscale mathematics  
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λD ! ρs

Governing Equations for Gyrokinetic Particle Simulation
• Gyrokinetic Vlasov Equation is solved using Particle-In-Cell (PIC) methods

• Gyrokinetic Poisson’s Equation is solved using PETSc (SciDAC TOPS)

• Gyrokinetic Ampere’s Law
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Multiscale Maxwell’s Equations 
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ACCOMPLISHMENTS
• Development of Mathematical and Numerical Algorithms
-- High-frequency-short-wavelength gyrokinetics
-- Low-frequency-mesoscale gyrokinetics
-- Low-frequency-long-wavelength gyrokinetics
-- Symplectic Integrator
  

• Preparations for Fusion Simulation Project (FSP)

-- Gyrokinetic Tokamak Simulation (GTS) code 

• Developed and taught a graduate level course, “Kinetic Theory and Modeling of 
Plasmas” (APAM 4990), at the Department of Applied Physics and Applied Mathematics, 
Columbia University in Spring Semester 2008  

• Publications

   -- 4 published papers and 2 manuscripts in preparation 

• Invited Talks 
-- 2 talks at 20th International Conference on Numerical Simulation of of Plasmas 
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“High Frequency Gyrokinetic Particle Simulation” 
R. A. Kolesnikov, W. W. Lee, H. Qin, and E. Startsev, Phys. Plasmas 14, 072506 (2007).

High Frequency Gyrokinetics

gives nonlinear dynamics of three-wave coupling between
harmonics n, m, and p satisfy p=m−n. It may be that the
choice of important harmonics is not clear. If this is the case,
one cannot effectively utilize the 5D algorithm to study the
dynamics of parametric decay. Efficient ways to treat fast
nonlinearities in the 5D algorithm with no loss of gyrophase
information is a subject of future research.

V. DISCUSSION AND FUTURE WORK

The high frequency gyrokinetic algorithm may be
readily generalized to electromagnetic systems, which is a
subject for future research. The new 6D and 5D versions of
the algorithm may be especially useful for computational
study of the dynamics of propagation, conversion, and ab-
sorption of radio frequency waves in tokamak plasmas.
Some of the approaches utilized for studying the wave-
plasma interaction include combination of wave solvers13

with Fokker-Planck codes14 and Monte Carlo simulation.15

These approaches assume heating dynamics to be quasilinear

which can be approximated by the diffusion in velocity
space. While quasilinear theory may be a good approxima-
tion in the electron cyclotron heating case, it can be argued
that it breaks down for ion interactions.15 Our new approach
describes the nonlinear heating dynamics based on first prin-
ciples physics. In gyrokinetic formulation the perpendicular
heating dynamics is completely described by the evolution of
shapes of the Kruskal rings according to conservation of
magnetic moment equation !10". Equations !9" and !10" al-
low for both regular and secular solutions, which produce the
heating rate. Similar to a direct Lorentz-force simulation,5

the new approach presented in this paper can self-
consistently describe the wave dynamics together with the
evolution of non-Maxwellian parts of distribution functions,
particle orbits, etc. Also, it allows us to address the issue of
interaction between wave dynamics and microinstability-
driven turbulence.

Since the electromagnetic wave propagating in inhomo-
geneous plasma can go through mode conversion layers

FIG. 5. !Color online" !a" Time dependencies of the
amplitude of the ion Bernstein wave from the 6D !black
curves" and 5D high frequency gyrokinetic !red curves"
codes. !b" Frequency spectra !on a logarithmic scale".
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• A new gyrokinetic approach for arbitrary 
frequency dynamics in magnetized plasmas 
including ion cyclotron waves by viewing each 
particle as a quickly changing nearly periodic 
Kruskal ring rather than a rigid charged ring.

• This approach allows the separation of 
gyrocenter and gyrophase responses and thus 
allows for, in many situations, larger time steps 
for the gyrocenter push than for
the gyrophase push. 

• The gyrophase response which determines 
the shape of Kruskal rings can be described by 
the Fourier series in gyrophase, allowing 
control over the
cyclotron harmonics at which the plasma 
responds and, thus, reducing the 
dimensionality. 

The frequency spectra for the ion Bernstein 
waves from the 6D  (black)  and 5D (red) 
the high frequency gyrokinetic code



“Electromagnetic High Frequency Gyrokinetic Particle Simulation,” 
R. A. Kolesnikov, W. W. Lee and H. Qin, Comm. in Comp. Phys. 4, 575 (2008)

High Frequency Gyrokinetics (cont.)

• A new electromagnetic version of the high 
frequency gyrokinetic numerical algorithm 
for particle-in-cell simulation is developed. 
The new algorithm offers an efficient way to 
simulate the dynamics of plasma heating 
and
current drive with radio frequency waves.
• Moreover, the gyrokinetic formalism 
allows separation of the cold response from 
kinetic effects in the current, which allows 
one to use much smaller number of particles 
than what is required by a direct Lorentz-
force simulation.
• Also, the new algorithm offers the 
possibility to have particle refinement 
together with
mesh refinement, when necessary. 
• Simulations of electromagnetic low-hybrid 
waves propagating in inhomogeneous 
magnetic field are shown here.

Simulations of lower-hybrid heating using Kruskal rings

Illustration of the idea 
of particle refinement 
technique

Stochastic heating of plasma 
ions for lower-hybrid waves 
for a different grid
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“Steady State Turbulent Transport in 
Magnetic Fusion Plamsas,” 
W. W. Lee, S. Ethier, R. Kolesnikov, W. X. 
Wang and W. M. Tang, 
submitted to Computational Science and 
Discovery (2008)

“Effects of Profile Relaxation on Ion 
Temperature Gradient Drift Instabilities,” 
R. Ganesh, W. W. Lee, R. Kolesnikov, S. 
Ethier, and J. Manickam, manuscript in 
preparation.

Global-scale and Meso-scale 
Gyrokinetics

Global simulations of mesoscale ITG fluctuations 

Time evolution of ion thermal diffusivity

Large global scale zonal flow structure



“Simulation of Finite-beta Effects in Gyrokinetic Plasmas,” 
E. A. Startsev, W. W. Lee and W. X. Wang, manuscript in preparation.

Low-Frequency Finite-Beta Gyrokinetics

• It is found that GK PIC simulations for the finite beta 
stabilization of ITG modes in the presence of FLR 
effects needs also to resolve the electron skin depth.
• This need coming from the multiscale Poisson’s 
equation, even in the absence of collisionless tearing, 
can be understood from the point of view singular 
perturbation methods.
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FIG. 3: Logarithmic plot of normalized electric field ψ as function of time Ωcit for Ti/Te = 1, κn = 0.1,

κT = 0.0 and for different values of plasma β.

result is (ω+ iγ)sm/Ωi = −0.003+0.0025i; for β = 5%: (ω+ iγ)th/Ωi = −0.003+0.0023i while the

simulation result is (ω + iγ)sm/Ωi = −0.003+0.002i. Note that the simulation results for β = 10%

are noisy due to already mentioned problem with calculating fifth order electron velocity moment.

In all of the cases the results of simulations agree very well with the theoretical results.
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FIG. 3: Logarithmic plot of normalized electric field ψ as function of time Ωcit for Ti/Te = 1, κn = 0.1,

κT = 0.0 and for different values of plasma β.

result is (ω+ iγ)sm/Ωi = −0.003+0.0025i; for β = 5%: (ω+ iγ)th/Ωi = −0.003+0.0023i while the

simulation result is (ω + iγ)sm/Ωi = −0.003+0.002i. Note that the simulation results for β = 10%

are noisy due to already mentioned problem with calculating fifth order electron velocity moment.

In all of the cases the results of simulations agree very well with the theoretical results.
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FIG. 3: Logarithmic plot of normalized electric field ψ as function of time Ωcit for Ti/Te = 1, κn = 0.1,

κT = 0.0 and for different values of plasma β.

result is (ω+ iγ)sm/Ωi = −0.003+0.0025i; for β = 5%: (ω+ iγ)th/Ωi = −0.003+0.0023i while the

simulation result is (ω + iγ)sm/Ωi = −0.003+0.002i. Note that the simulation results for β = 10%

are noisy due to already mentioned problem with calculating fifth order electron velocity moment.

In all of the cases the results of simulations agree very well with the theoretical results.
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FIG. 3: Logarithmic plot of normalized electric field ψ as function of time Ωcit for Ti/Te = 1, κn = 0.1,

κT = 0.0 and for different values of plasma β.

result is (ω+ iγ)sm/Ωi = −0.003+0.0025i; for β = 5%: (ω+ iγ)th/Ωi = −0.003+0.0023i while the

simulation result is (ω + iγ)sm/Ωi = −0.003+0.002i. Note that the simulation results for β = 10%

are noisy due to already mentioned problem with calculating fifth order electron velocity moment.

In all of the cases the results of simulations agree very well with the theoretical results.
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FIG. 4: Logarithmic plot of normalized electric field ψ as function of time ωcit for Ti/Te = 1, κn = 0.1,

κT = 0.4 and for different values of plasma β.

• Finite-beta 
stabilization 
of drift waves

• Finite-beta 
stabilization 
of ITG 
modes

• A new double-split scheme is used

F = (1 + ψ)F0 +
∫

dx||κ · (∇A|| × b̂0) + δg

dδge

dt
= −F0

[
∂ψ

∂t
+∇ψ × b̂0 · κ

]

ψ = φ +
∫

(∂A‖/∂t)dx‖/c



“Variational Symplectic Integrator for Long Time Simulations of the Guiding Center Motion 
of Charged Particles in General Magnetic Fields,” 
Hong Qin and Xiaoyin Guan, Phys. Rev. Lett. 100, 035006 (2008) 

Phase pace preservation integrator for long time simulations 

The guiding-center dynamics in general magnetic 
field does not possess a (global) canonical 
symplectic structure, and the conventional 
symplectic integrator does not apply. Marsden and 
West [2001] recently developed the method of 
variational symplectic integrator for dynamic 
systems with a well-defined Lagrangian, and the 
variational symplectic integrator conserves exactly 
a non-canonical symplectic structure. Here, we 
develop the variational symplectic integrator for the 
guiding-center dynamics from the guiding-center 
Lagrangian and demonstrate its superior numerical 
properties compared with the standard fourth order 
Runge-Kutta methods.



Gyrokinetic Tokamak Simulation (GTS) Code 

quasimodes are generated by the following mode coupling
process:

!n1,m1" + !n2,m2" ⇒ !n2 ± n1,m2 ± m1" ,

where the pump modes !n1 ,m1" and !n2 ,m2" are two unstable
eigenmodes. It is remarked that this nonlinear interaction
causes an energy cascade in !n ,m" space nonlocally, result-
ing in a spectrum gap between the unstable eigenmodes and
the quasimodes #Fig. 9!b"$. At later times, successive nonlin-
ear couplings further transfer energy to fill up the spectrum
gap, eventually resulting in an overall downshifted spectrum
in the fully developed turbulence regime #Fig. 9!c"$. The
later nonlinear process may be dominated by the scattering
of unstable eigenmodes !pump modes" off the driven low-n
quasimodes,33 which was observed to be responsible for
saturating the electron temperature gradient !ETG" instability
in a global gyrokinetic simulation.34 Another remarkable fea-
ture of the k-space nonlinear dynamics is that the turbulence
energy cascades toward the low-n modes along the reso-
nance surface m /n%q. In this respect, linear toroidal mode
couplings, which transfer energy among different poloidal
harmonics of a single n mode due to the poloidal angle de-
pendence of the magnetic field, may play an important role.
This is different than slab geometry simulations in which the
particle E!B detrapping process was shown to play an im-
portant role in nonlinear saturation.35

V. DISCUSSION AND CONCLUSIONS

Our global particle simulations using a generalized gy-
rokinetic model with realistic parameters in shaped plasmas
have demonstrated that turbulence spreading is quite a ge-
neric phenomenon. The linear spreading due to the linear
toroidal mode coupling is convective, which evenly raises,
with a constant rate, the radial envelope of fluctuation inten-
sity in the linearly stable region. However, its spreading into
the stable region is very limited in both radial extent and
intensity. The nonlinear spreading due to the nonlinear wave-
wave interactions is shown to be responsible for developing
global turbulence, resulting in significant fluctuations !com-
parable to those in the unstable ITG source region" and en-
hanced ion energy transport in the linearly stable region. The
nonlinear spreading exhibits diffusive, and possibly subdif-
fusive, characteristics, being consistent with theories. The

major expansion of fluctuations to the stable regions due to
nonlinear spreading is observed to occur on a time scale of
the order of the linear growth time, right after the nonlinear
saturation of the ITG instability. This happens for both tur-
bulence eddies broken by the self-generated zonal flows, and
elongated radial streamers as well. The later case corre-
sponds to having the zonal flow generation artificially sup-
pressed in ITG simulations, and corresponds to the observa-
tion that there is little zonal flow generation in ETG
dynamics. The principal effect of self-generated zonal flows
on turbulence spreading observed in our simulations is
through the E!B flow shear induced regulation of turbu-
lence. Compared to the numerical experiments with zonal
flow that is artificially suppressed, both front propagation
speed and turbulence extent are reduced in the presence of
self-generated zonal flows. This can be accounted for by the
fact that zonal flows regulate turbulence intensity to a level
usually an order of magnitude lower than that without zonal
flows, and the fact that the front propagation speed decreases
with the turbulence intensity. It is definitely interesting, but
difficult in a simulation, to isolate and identify the nonlinear
interactions of drift waves and zonal flows in toroidal plasma
as an underlying dynamics for turbulence spreading.

The key results of our simulation study concern the tur-
bulence propagation through a transport barrier, character-
ized by an E!B shear layer. It has been found that an
E!B shear layer with an experimentally relevant level of
the shearing rate can significantly reduce, and sometimes
even block, turbulence spreading by reducing the spreading
extent and speed. The E!B shear blocking is essentially a
local process, while turbulence spreading is a nonlocal phe-
nomenon. The key quantity to the control of turbulence
spreading is identified to be the local maximum shearing rate
&"E

max&, rather than the amplitude of Er. The underlying phys-
ics may relate to a robust feature of shear flows for turbu-
lence dissipation, which enhances the damping of fluctua-
tions in the shear layer. The role of the equilibrium E!B
shear layer as a “barrier” for turbulence spreading revealed
by the gyrokinetic simulations, however, represents a new
aspect of the transport barrier physics, in addition to the well
known quenching effect of shear flow on local instabilities. It
may suggest a possible interesting application to the im-
provement of plasma confinement in experiments. Both ex-

FIG. 9. !Color online" Three time slices of the fluctuation spectra #$mn
2 at r /a=0.56: !a" linear growth phase, !b" an earlier time during nonlinear saturation,

and !c" fully developed turbulence regime. This is the same simulation as in Fig. 8.
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quasimodes are generated by the following mode coupling
process:

!n1,m1" + !n2,m2" ⇒ !n2 ± n1,m2 ± m1" ,

where the pump modes !n1 ,m1" and !n2 ,m2" are two unstable
eigenmodes. It is remarked that this nonlinear interaction
causes an energy cascade in !n ,m" space nonlocally, result-
ing in a spectrum gap between the unstable eigenmodes and
the quasimodes #Fig. 9!b"$. At later times, successive nonlin-
ear couplings further transfer energy to fill up the spectrum
gap, eventually resulting in an overall downshifted spectrum
in the fully developed turbulence regime #Fig. 9!c"$. The
later nonlinear process may be dominated by the scattering
of unstable eigenmodes !pump modes" off the driven low-n
quasimodes,33 which was observed to be responsible for
saturating the electron temperature gradient !ETG" instability
in a global gyrokinetic simulation.34 Another remarkable fea-
ture of the k-space nonlinear dynamics is that the turbulence
energy cascades toward the low-n modes along the reso-
nance surface m /n%q. In this respect, linear toroidal mode
couplings, which transfer energy among different poloidal
harmonics of a single n mode due to the poloidal angle de-
pendence of the magnetic field, may play an important role.
This is different than slab geometry simulations in which the
particle E!B detrapping process was shown to play an im-
portant role in nonlinear saturation.35

V. DISCUSSION AND CONCLUSIONS

Our global particle simulations using a generalized gy-
rokinetic model with realistic parameters in shaped plasmas
have demonstrated that turbulence spreading is quite a ge-
neric phenomenon. The linear spreading due to the linear
toroidal mode coupling is convective, which evenly raises,
with a constant rate, the radial envelope of fluctuation inten-
sity in the linearly stable region. However, its spreading into
the stable region is very limited in both radial extent and
intensity. The nonlinear spreading due to the nonlinear wave-
wave interactions is shown to be responsible for developing
global turbulence, resulting in significant fluctuations !com-
parable to those in the unstable ITG source region" and en-
hanced ion energy transport in the linearly stable region. The
nonlinear spreading exhibits diffusive, and possibly subdif-
fusive, characteristics, being consistent with theories. The

major expansion of fluctuations to the stable regions due to
nonlinear spreading is observed to occur on a time scale of
the order of the linear growth time, right after the nonlinear
saturation of the ITG instability. This happens for both tur-
bulence eddies broken by the self-generated zonal flows, and
elongated radial streamers as well. The later case corre-
sponds to having the zonal flow generation artificially sup-
pressed in ITG simulations, and corresponds to the observa-
tion that there is little zonal flow generation in ETG
dynamics. The principal effect of self-generated zonal flows
on turbulence spreading observed in our simulations is
through the E!B flow shear induced regulation of turbu-
lence. Compared to the numerical experiments with zonal
flow that is artificially suppressed, both front propagation
speed and turbulence extent are reduced in the presence of
self-generated zonal flows. This can be accounted for by the
fact that zonal flows regulate turbulence intensity to a level
usually an order of magnitude lower than that without zonal
flows, and the fact that the front propagation speed decreases
with the turbulence intensity. It is definitely interesting, but
difficult in a simulation, to isolate and identify the nonlinear
interactions of drift waves and zonal flows in toroidal plasma
as an underlying dynamics for turbulence spreading.

The key results of our simulation study concern the tur-
bulence propagation through a transport barrier, character-
ized by an E!B shear layer. It has been found that an
E!B shear layer with an experimentally relevant level of
the shearing rate can significantly reduce, and sometimes
even block, turbulence spreading by reducing the spreading
extent and speed. The E!B shear blocking is essentially a
local process, while turbulence spreading is a nonlocal phe-
nomenon. The key quantity to the control of turbulence
spreading is identified to be the local maximum shearing rate
&"E

max&, rather than the amplitude of Er. The underlying phys-
ics may relate to a robust feature of shear flows for turbu-
lence dissipation, which enhances the damping of fluctua-
tions in the shear layer. The role of the equilibrium E!B
shear layer as a “barrier” for turbulence spreading revealed
by the gyrokinetic simulations, however, represents a new
aspect of the transport barrier physics, in addition to the well
known quenching effect of shear flow on local instabilities. It
may suggest a possible interesting application to the im-
provement of plasma confinement in experiments. Both ex-

FIG. 9. !Color online" Three time slices of the fluctuation spectra #$mn
2 at r /a=0.56: !a" linear growth phase, !b" an earlier time during nonlinear saturation,

and !c" fully developed turbulence regime. This is the same simulation as in Fig. 8.
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quasimodes are generated by the following mode coupling
process:

!n1,m1" + !n2,m2" ⇒ !n2 ± n1,m2 ± m1" ,

where the pump modes !n1 ,m1" and !n2 ,m2" are two unstable
eigenmodes. It is remarked that this nonlinear interaction
causes an energy cascade in !n ,m" space nonlocally, result-
ing in a spectrum gap between the unstable eigenmodes and
the quasimodes #Fig. 9!b"$. At later times, successive nonlin-
ear couplings further transfer energy to fill up the spectrum
gap, eventually resulting in an overall downshifted spectrum
in the fully developed turbulence regime #Fig. 9!c"$. The
later nonlinear process may be dominated by the scattering
of unstable eigenmodes !pump modes" off the driven low-n
quasimodes,33 which was observed to be responsible for
saturating the electron temperature gradient !ETG" instability
in a global gyrokinetic simulation.34 Another remarkable fea-
ture of the k-space nonlinear dynamics is that the turbulence
energy cascades toward the low-n modes along the reso-
nance surface m /n%q. In this respect, linear toroidal mode
couplings, which transfer energy among different poloidal
harmonics of a single n mode due to the poloidal angle de-
pendence of the magnetic field, may play an important role.
This is different than slab geometry simulations in which the
particle E!B detrapping process was shown to play an im-
portant role in nonlinear saturation.35

V. DISCUSSION AND CONCLUSIONS

Our global particle simulations using a generalized gy-
rokinetic model with realistic parameters in shaped plasmas
have demonstrated that turbulence spreading is quite a ge-
neric phenomenon. The linear spreading due to the linear
toroidal mode coupling is convective, which evenly raises,
with a constant rate, the radial envelope of fluctuation inten-
sity in the linearly stable region. However, its spreading into
the stable region is very limited in both radial extent and
intensity. The nonlinear spreading due to the nonlinear wave-
wave interactions is shown to be responsible for developing
global turbulence, resulting in significant fluctuations !com-
parable to those in the unstable ITG source region" and en-
hanced ion energy transport in the linearly stable region. The
nonlinear spreading exhibits diffusive, and possibly subdif-
fusive, characteristics, being consistent with theories. The

major expansion of fluctuations to the stable regions due to
nonlinear spreading is observed to occur on a time scale of
the order of the linear growth time, right after the nonlinear
saturation of the ITG instability. This happens for both tur-
bulence eddies broken by the self-generated zonal flows, and
elongated radial streamers as well. The later case corre-
sponds to having the zonal flow generation artificially sup-
pressed in ITG simulations, and corresponds to the observa-
tion that there is little zonal flow generation in ETG
dynamics. The principal effect of self-generated zonal flows
on turbulence spreading observed in our simulations is
through the E!B flow shear induced regulation of turbu-
lence. Compared to the numerical experiments with zonal
flow that is artificially suppressed, both front propagation
speed and turbulence extent are reduced in the presence of
self-generated zonal flows. This can be accounted for by the
fact that zonal flows regulate turbulence intensity to a level
usually an order of magnitude lower than that without zonal
flows, and the fact that the front propagation speed decreases
with the turbulence intensity. It is definitely interesting, but
difficult in a simulation, to isolate and identify the nonlinear
interactions of drift waves and zonal flows in toroidal plasma
as an underlying dynamics for turbulence spreading.

The key results of our simulation study concern the tur-
bulence propagation through a transport barrier, character-
ized by an E!B shear layer. It has been found that an
E!B shear layer with an experimentally relevant level of
the shearing rate can significantly reduce, and sometimes
even block, turbulence spreading by reducing the spreading
extent and speed. The E!B shear blocking is essentially a
local process, while turbulence spreading is a nonlocal phe-
nomenon. The key quantity to the control of turbulence
spreading is identified to be the local maximum shearing rate
&"E

max&, rather than the amplitude of Er. The underlying phys-
ics may relate to a robust feature of shear flows for turbu-
lence dissipation, which enhances the damping of fluctua-
tions in the shear layer. The role of the equilibrium E!B
shear layer as a “barrier” for turbulence spreading revealed
by the gyrokinetic simulations, however, represents a new
aspect of the transport barrier physics, in addition to the well
known quenching effect of shear flow on local instabilities. It
may suggest a possible interesting application to the im-
provement of plasma confinement in experiments. Both ex-

FIG. 9. !Color online" Three time slices of the fluctuation spectra #$mn
2 at r /a=0.56: !a" linear growth phase, !b" an earlier time during nonlinear saturation,

and !c" fully developed turbulence regime. This is the same simulation as in Fig. 8.
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• General geometry interfaced with TRANSP and JSOLVER:
capable for validation exercises and synthetic diagnostics based
on experimental data from NSTX and DIIID

• Generalized Poisson solver involving two iteration loops 
using PETSc

• Multiscale phenomena have been observed 

[Wang et al., 2006 and 2007]
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Performance of our gyrokinetic PIC code on MPP Platforms



Marching toward Fusion Simulation Project (FSP) 
• Developing multiscale algorithms in toroidal geometry and testing them on GTS

• Using inverse problems based on 
synthetic diagnostics for studying 
fluctuations and  developing 
predictive capabilities 

Diagnostics (Real/Synthetic) as an Inverse Problem

! Measurement: Ψreflected = LΨincident
! L = L(δne)
! Inverse problem: Determine δne from L. Ill posed problem!
! Instead recover statistical properties of δne, e.g. 〈δne〉, σ,

correlation-length,. . .
! Statistical inversion: Find π(σ|L) ∝ πprior (σ)π(L|σ)

• Using projective integration in time 
to achieve integrated simulations by 
connecting  separate first principles 
gyrokinetic PIC simulations for 
heating, transport and MHD

• Using Lattice-Boltzmann-like 
methods to simplify electron dynamics 
for gyrokinetic MHD simulations 

• Developing an implicit wave 
equation solver for GTS



1. Basics of kinetic plasma theory and simulation

• Vlasov-Poisson Equations
• Landau Damping and collisions

    • Particle codes
      - Klimontovich-Dupree representation
    • Vlasov codes
      - Semi-Lagrangian method and others
    • PIC simulation
      - NGP & SUDS, form factors
    • Computing Considerations
    • Remarks

2. Theoretical and numerical properties of plasmas

    • Linear Properties 
    • Fluctuation-Dissipation Theorem
    • Numerical Noise
    • Time Step Restrictions
    • Grid Spacing Restrictions
    • Initial loading: Quiet Start - Fobanacci numbers
    • Implicit Schemes and Collisonal Models

3. Perturbative Particle Simulation and Other 
    Schemes

• Linearized trajectory method
    • Delta-f methods
      - Weight evolution method
      - Perturbed moments method

• Split-weight method
      - Quasineutral model

• Other innovative schemes
       - Adiabatic pusher, subcycling and orbit 
          averaging
       - Drift Kinetic Model

THEORY AND MODELING OF KINETIC PLASMAS
APAM 4990, Spring 2008

W. W. Lee, Adjunct Professor
Department of Applied Physics and Applied Mathematics, Columbia University

(assisted by M. Adams) 



5. Drift Wave Instabilities and Ion 
Temperature Gradient Modes

• Linear properties
• Numerical Schemes
• Nonlinear Saturation 
• Hasegawa-Mima Equation 
• Entropy conservation 

6. Electromagnetic Models for Plasmas

• Fully Electromagnetic Maxwell Equations 
in Coulomb Gauge
• Darwin Model
• MHD model
• Electrostatic model

7. Alfven Waves in Gyrokinetic Plasmas

• Shear-Alfven waves
• Compressional-Alfven waves
• Comparisons with reduced MHD equations
• Finite-beta stabilization of microinstabilities

4. Gyrokinetic Theory and Simulation

    • Drift Kinetic Vlasov-Poisson equations
   - Guiding center motion
   - ExB drift and Polarization Drift
   - Lowest order gyrokinetic-Poisson equations

    • Gyrokinetic Vlasov-Poisson equations
      - Gyrokinetic ordering
      - Gyrocenter coordinates
      - Gyrophase averaging
    • Gyrokinetic particle pushing
      - Coordinates transformation
    • Gyrokinetic field solver
      - Integral equation
      - Pede approximation

17 students taking for credit
3 students auditing (2 from PPPL)
6 home work assignments
1 take home final

THEORY AND MODELING OF KINETIC PLASMAS (cont.)



Summary and Conclusions

• It has been an exciting three years of multiscale research and education under the 
present OASCR project.

• We hope that we will have the opportunity for three more years.

• Hopefully, we have also helped laying the foundations for integrated simulation of 
fusion plasmas and are looking forward to participate in the fusion simulation project 
(FSP) using the gyrokinetic PIC approach for heating, turbulence, MHD and transport 
physics.  

• For the immediate future, in conjunction with SciDAC activities, we plan to participate 
in the simulations of ITER plasmas using GTS on the NCCS petaflop leadership system 
as a Science-at-Scale Pionnering Application.


