

FACETS: Framework Application for Core-Edge Transport Simulations

J. R. Cary (Tech-X, CU)

for the FACETS TEAM https://www.facetsproject.org/facets Plasma Science Advanced Computing Institute (PSACI) Id news: Program Advisory Committee Plasma 2010 June 8, 2007

framework application: an application designed to allow a series of computations with ever increasing fidelity and, therefore, to include successively more sophisticated models, in particular of each of the aspects of a fusion confinement device.

> In-reach: Fang (Cherry) Liu, Bramley/IU, Dist components Mahmood Miah, Jardin/PPPL, MHD Eq.

Self-consistent SRF

FACETS Background

- Part of SciDAC portfolio of the Office of Fusion **Energy Sciences**
- Proposed in April, 2006

Colorado

PPPL

LBNL IU MIT

NYU Lodestar

- Funded January 1, 2007
- Multi-institutional main project: Tech-X (Physics, ParaTools CS/AM); LLNL (Physics, CS/AM); PPPL (Physics); ANL (CS/AM); UCSD (Physics); CSU (AM); ORNL (CS, perf); ParaTools (CS, perf)
 - Appended SAP: GA, ORNL
 - Advisory: Columbia; LBNL; IU; MIT; NYU; Lodestar
 - FACETS In collaboration with the CETs: TOPS, TASCS, VACET PSACI. PPPL. 8 Jun 07

FACETS Goals

- Provide coupled core-edge-wall computational capability to the fusion community
 - at various levels of detail
 - serial and **parallel**
- Make impact on ITER and existing/new machines
 - Device selection (heating)
 - Scenario development
 - Operation

Argonne

Colorado

ParaTools

P P P L

LBNL

IU MIT

NYU Lodestar

- Analysis
- Maximal reuse of existing (legacy) software
- Take advantage of petascale computing facilities: <u>a</u> priori parallel
- Have FACETS broadly installed and in use (move beyond "users = developers")

Idealized view: surfacial couplings between phase transitions

same points

Argonn

Colorado

ParaTools

ופפק

LBNL IU

MIT NYU Lodestar

SciDAC

Coupling

W

a

- Core is a collisionless, 1D transport system with local, only-cross-surface fluxes
- Edge is a collisional, 2D transport system
- Wall: beginning of a particle trapping matrix
 Surfacial couplings

FACETS: distinct part of the SciDAC portfolio

- Single-physics SciDACs
 - RF
 - CEMM
 - GKT
 - particle
 - continuum
 - Energetic particles
- FIIs (proto-FSP's)
 - SWIM (RF + MHD: volumetric; diagnostic → mutual; file transfer)
 - CPES (Edge + MHD; volumetric; diagnostic; data flow)
 - FACETS (Core + Edge + Wall; surfacial; implicit; message passing)

Management: FACETS approach via teams

Framework, Components, Research, Engineering

- Framework (Cary): Tech-X, LLNL, ParaTools, all
 - main(...)

Argonne

LBNL

IU MIT

NYU Lodestar

FACET

Colorado

– generic components, including core driver

ParaTools Core sources (McCune): PPPL, Tech-X

- **PPPL** Edge (Rognlien): LLNL, ANL, ORNL (perf)
 - <u>Wall (Pigarov): UCSD, Tech-X</u>
 - Embedded turbulence SAP (Fahey, Candy): ORNL, GA
 - <u>Algorithms (McInnes): ANL</u>
 - <u>Performance (Kuehn): ORNL, ParaTools</u>
 - Coupling (Estep): LLNL, CSU, ANL
 - SEDAC Infrastructure (Wade-Stein):
 - build, regression, repo, doc system)
 - <u>V&V</u> (early, but starting)

Surfacial coupling: scientific basis and numerical issues

- Edge-plasma/wall analogous to atmosphere/ocean
- Wall acts as a boundary condition for edge plasma
 - Sputtering
 - Secondary electron/ion emission
- Refinement needs wall model to account for internal state
 - Wall has embedded H/D density
 - H/D diffuses in metal, both in and out
 - Impact of electrons, ions, and neutrals can cause release of embedded H/D

Valid basis for independent components PSACI. PPPL. 8 Jun 07

LBNL IU MIT NYU Lodestar SciDAC

ParaTools

P P P I

Argonne

• Moving out, plasma becomes more collisional

NYU

Lodestar

SciDAC

ACE

Both approximations exist - allows matching

Basis requires matching theory

Relaxation times very different

- Core energy relaxation time (energy confinement time)
 - $-\sim s$
 - Gradient relaxation means local relaxation very fast
- Edge relaxation times very short
 - Collide into scrape-off layer
 - Stream to walls
- Implicit solver needed for coupling the two systems

How do we choose among the ways to solve these systems?

• Core gives $F_c(Q_e, t+\Delta t)$

Argonne

ParaTools

PPPI

LBNL IU

MIT NYU Lodestar

- Edge gives $\mathbf{Q}_{\mathbf{e}}(\mathbf{F}_{\mathbf{c}}, \mathbf{t}+\Delta \mathbf{t})$
- Which? (Parametric dependence on t+ Δ t dropped)
 - $-\mathbf{Q}_{\mathbf{e}}(\mathbf{F}_{\mathbf{c}}(\mathbf{Q}_{\mathbf{e}})) \mathbf{Q}_{\mathbf{e}} = 0$ (edge dictator)
 - $-\mathbf{F_c}(\mathbf{Q_e}(\mathbf{F_c})) \mathbf{F_c} = 0$ (core dictator)
 - Coupled (component democracy)
 - $\mathbf{F}_{\mathbf{c}}(\mathbf{Q}_{\mathbf{e}}) = \mathbf{F}_{\mathbf{c}}$
 - $\mathbf{Q}_{e}(\mathbf{F}_{c}) = \mathbf{Q}_{e}$
 - Global solver for all residuals (residual democracy)
 Which way to solve?

Project goals

Overall goals

Argonn

Colorado

pppi

LBNL IU

MIT NYU Lodestar

- Year 1: Ad hoc coupling of core and edge
- ParaTools . Year 2: Core and edge coupled within framework
 - Year 3: Wall and equilibrium coupled in with core and edge
 - Years 4 & 5: Core turbulence added into framework

Coupling of two <u>parallel components</u> uses server component concept

Independent components through one interface

Argonne Colorado ParaTools • P P P L LBNL IU MIT NYU Lodestar **SciDAC** ACE

Generic component interface

- Librarify so can run entirely through methods (functions, subroutines), namespacing
- Create driver to use library calls
- Supply input file
- readParams() (Reads input file)
- setComm() (if parallel)
- initialize() (allocated memory, set initial values) OR startServer()
- setData() (various, see next slide)
- getData() (various, see next slide, gets appropriate to tentative new state)
- advance(double t)
- acceptState()
- dump()
- restore() (read restart file)

LATER

• getRankOfInterface()

Interface walked through for implicit and explicit coupling

CORE Sources (McCune) PPPL NUBEAM in FACETS

Core plasma MHD equilibrium, temperatures - and densities.

 \circ

MPI Broadcast to N processors

MPI Reduce from N processors

Argonne

Colorado

tate

ParaTool

P P P L

LBNL

IU

MIT

NYU Lodestar

SciDAC

Heating, fueling, and current drive profiles.

Progress Since 1-Jan-2007:
MPI NUBEAM running on small Linux Clusters.
Tech-X "autotools" NUBEAM version builds and runs.
Serial NUBEAM verified on:

SGI (intel fortran 9.0)
Linux (LF fortran 32 or 64)

N to M mapping of MPIdistributed particle state files.

Fast ion deposition, orbiting, and losses computed over N processing elements. Each PE handles (1/N) of the Monte Carlo ions.

Progress and plans for edge simulation team

Completed tasks

•

Argonne

Colorad

ParaTools

פפפ

LBNL

IU MIT NYU

Lodestar

- script to automatically convert any UEDGE to full F90 source
- utilize Forthon & F90 UEDGE to build portable Python-UEDGE
- PyUEDGE & test cases to algorithm & performance teams
- begin developing interface wrapper to core model
- Near-team tasks (six months)
 - complete interface wrapper to core and wall models
 - aid algorithm group in assessing solver enhancements
 - aid performance group in identifying/fixing bottlenecks
 - re-establish UEDGE parallel capability with 2D domain decomp
- One-year tasks
 - implement & test initial coupling algorithms with core & wall
 - aid algorithm/perform. teams to assess parallelization/coupling

Plasma-wall interaction

We developed WALLPSI which is the 0-D two-point (surface and bulk) "wall" model to calculate: (i) wall temperature, (ii) trapped and mobile hydrogen concentrations in the wall, (iii) erosion rates.

Current work on WALLPSI includes:

Argonne

Colorado

PPPL

LBNL IU

MIT

NYU Lodestar

SciDAC

ACE

- benchmarking the code by solving some ParaTools(i) standard physics problems,
 - (ii) incorporation of extensive data on various elementary processes describing the hydrogen kinetics in wall and on surface. (iii) coupling WALLPSI and UEDGE.

(F The development of the 1-D "wall" model has started.

Simple 1-D plasma transport model is under development and it will be coupled to 1-D "wall" model for further studies of basic physics of plasma-wall interactions and plasma stability analysis. PSACI, PPPL, 8 Jun 07

Results of WALLPSI calculation (0D) of wall temperature and effective erosion rate on the response to the heat and particle plasma pulse ("ELM"). As seen, there is strong coupling of temperature and erosion.

Out-year efforts: embedded, higher-fidelity

Embedded SAP: callable GYRO

•

Argonne

Colorado

ParaTools

P P P I

LBNL

IU

MIT

NYU Lodestar

SciDAC

- Using fixed-profile GYRO gyrokinetic simulations, we
 - perform transport-timescale simulations
 - adjust profiles to achieve steady-state power balance
- Find the unique plasma profile for which losses due to core turbulence are balanced by sources
- Higher-fidelity edge models
 - TEMPEST
 - $XGC\{0,1\}$

Steady-state profiles using 4 instances of GYRO with radii r=(0.2, 0.4, 0.6, 0.8) and 16 processes for each instance

Coupling Team Activities

- Organization of activities and information gathering
 - Series of presentations covering the algorithms of the UEDGE 2D edge code, the coupling of UEDGE to core transport, and mathematical tools for measuring the goodness of coupling algorithms
- Development and initial analysis of simplified test models
 - The test models are targets for algorithm development and instrumentation
 - the first model is a coupled point model for core and edge transport and the second is a set of coupled 1-dimensional ODEs describing profiles in the core, central edge, and divertor legs
 - Initial analysis of the test models using applied mathematics tools has begun
- Current activities

Argonne

Colorado

ParaTools

P P P I

LBNL IU

> MIT NYU

Lodestar

- Explore the self-consistent coupling of turbulence and transport
- Development of testbed code for mathematical analysis of coreedge coupling and testing of new coupling strategies
- Elucidating the organizing principles of coupling and parallel coupling

Progress in performance

- Demonstrate TAU performance instrumentation, measurement, and analysis tools with FACETS
 - Python and C++ FACETS framework
- Design FACETS⇔TAU performance interface
- Design global performance access support
- Integration of performance support in components
 - NUBEAM
 - Lahey Fortran under Linux x86_64
 - UEDGE
 - WALL

Argonne

Colorado

ParaTools

P P P I

LBNL

IU

MIT NYU Lodestar

- Creation of FACETS performance database
- Review of software licensing and recommendation of the modified Eclipse license
- Working with SciDAC PERI group with Shirley Moore, UTK

Much of the basic engineering infrastructure in place

- Layering
- Revision control: subversion
- Build system: autotools
- Communication: conf. calls, 2 meetings/year
- Issue tracking: TRAC.
- Testing: See next page
- Versioning/release management: protocol in use elsewhere
- Documentation: only API (doxygen)
- Interface design: some

Who dreads reading the morning email?

Subject: [Facets-internal] FACETS nightly test results (3 FAILURES)

facets test results: FAILED Serial configure passed. Serial build passed. Parallel build passed. Unit tests passed. ==> Serial distcheck failed. ==> Parallel distcheck failed. ==> Integrity check failed. Output from unit tests... fcany-parallel: PASSED = 18. FAILED = 0 fcbox-parallel: PASSED = 89. FAILED = 0 fcboxcmp-parallel: PASSED = 2. FAILED = 0 fcboxneigh-parallel: PASSED = 16. FAILED = 0 <snip> fcdecomp-serial: PASSED = 6189. FAILED = 0 fcindexer-serial: PASSED = 596. FAILED = 0 fcsequencer-serial: PASSED = 760. FAILED = 0 fctypelist-serial: PASSED = 4. FAILED = 0 layercheck.pl finds no layering violations reform.sh finds formatting violations in the following files: fcifcs/FcCutCellGrid.h fctrol/FcSimulation.cpp facets/facets.cxx reform.sh finds no non-virtual destructors integcheck.sh finds no Doxygen errors

Argonne

Colorad

ParaTools

PPPL

LBNL

IU

MIT

NYU Lodestar

Risk evaluation: simplest, well-studied components may need rethinking as we move to the petascale

- Equilibrium depends on core currents, potentially halo currents
- Equilibrium provides geometry for core and edge
- ParaTools In a parallel code, how do these collocated components communicate?
 - Single equilibrium solver answering requests from 1000 other ranks?
 - If parallel, to minimize communication, how?
 - Solution natural in R-Z

PPPI

LBNL

IU MIT NYU

Lodestar

SciDAC

FACETS

- Core wants per flux surface
- Edge has different domain decomposition

FACETS has started outreach program

- Want user set > developer set
- Delicate balance on first delivery
 - too soon wastes time

Argonn

Colorad

ParaTools

pppi

LBNL IU MIT

NYU Lodestar

- too late delays input gathering
- Established communications with modelers at PPPL, MIT, GA, LLNL
- First release before year end for input gathering <u>Advisory committee</u>
 Bill Nevins, Chuck Kessel, Dennis Whyte, Lori Diachin, Andrew Siegel, Jim Drake <u>Team meetings</u> Nov 30-Dec 1, 2006 Aug. 9-10, 2007

FACETS

- Surfacial, implicit coupling via message passing
- First cut at organization complete
- Framework coming together
 - Infrastructure
 - Superstructure

ParaTools

pppi

LBNL IU MIT

NYU Lodestar

SciDAC

ACE

- Components (core sources, edge, wall) coming together
- Embedding of CS/AM partners has occurred.
- Research proceeding.
- Engineering and communication infrastructure in place
 - Outreach activities started