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Introduction

® Electron heat transport is important for burning plasma

Collisionless trapped electron mode (CTEM) is a prominent candidate

for electron anomalous transport in tokamak core plasma

What is saturation mechanism in CTEM?
What is transport mechanism in CTEM?

Does any transport scaling law exist in CTEM?

key issues

Ro/L1,=6.9, Ro/L;=2.2

Ro/lL,=2.2, T/T=1 .,
m/m.,=1837, q=1.4,s=0.78 <
15 Billion particles

29,000 procs for 42 hours

Global gyrokinetic particle simulation (GTC) is applied to address these
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Fluid-Kinetic Hybrid Electron Model in GTC

® |on is gyrokinetic and electron drift kinetic in GTC

® Challenges in electron particle simulation:

® [ast parallel electron motion requires much smaller time step.

® Numerical particle noise is enhanced due to electrons.

® Fluid-Kinetic Hybrid Model!-? circumvents these
difficulties by considering the fact:

® Electrons respond to non-zonal component of electrostatic
potential nearly adiabatically, but almost don’t respond to zonal

component.
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® Hybrid Model retains wave-electron resonance and
trapped electron effeCt 1. Maluilskiy/Lee POP (2000), Chen/Parker POP (20013

2. Lin/Chen POP (2001)



Part 1---Transport Scaling



Transport Scaling
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» Electron heat transport in CTEM: Bohm - GyroBohm scaling when
Increasing the system size

» Eddies are mostly microscopic due to the zonal flow shear
» ITER: a/p;>1000, should follow the GyroBohm scaling

» Simulation keeps all the dimensionless parameters unchanged
except for p*=p/a



Part 2---Saturation Mechanism



Zonal Flow Effect

» Radial streamers break and merge: dynamic system
= \When removing the zonal flow:

» Strong radial streamer forms

» Transport level increases about 5 times

= Zonal flow is the dominant saturation mechanism for CTEM



Part 3---Transport Mechanism
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CTEM Characteristic Time Scales
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Table 1: Characteristic time scales for trapped electrons in CTEM turbulences

and 1ons in I'TG turbulence

B CTEM Instability is kinetic ---
driven by toroidal precessional
resonance

B Given turbulence intensity, e
heat transport can be understood
as a fluid process due to weak
detuning of precessional
resonance

B In ITG, kinetic and fluid
processes can both regulate
turbulence
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Transport Mechanism
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® Large eddies contribute significantly to e transport since electron can travel long

distance --- this is essential to produce smooth radial profile of e heat transport
11

® |on can’t move freely in the large eddies due to kinetic decorrelation



Part Il

e GTC --- Status and Plan

— Code development

— Physical applications:
« CTEM
e Energetic particle transport
« Momentum transport
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GTC Status and Plan

[Integration of key capabilities in a single GTC version: done

Kinetic electrons via fluid-kinetic hybrid electron model
Electromagnetic solver using PETSc

General geometry MHD equilibrium and plasma profiles using spline
Global field-aligned mesh using magnetic coordinates

Multi-level parallelism using mixed mode of MPI/OpenMP
Advanced I/O using ADIOS

PPlan for GTC upgrades: full-fion simulation & neoclassical physics

GGTC 1s part of benchmark suites for DOE OASCR, NERSC, and Cray;
pioneering applications of ORNL LCF computers; INCITE FUSO017; SciDAC
GPS, GSEP, & CPES

Kkey active developers: Z. Lin, 1. Holod, W. Zhang, Y. Xiao (UCI), S.
Klasky (ORNL), S. Ethier (PPPL). Supported by SciDAC GPS, GSEP, &
CPES
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Electromagnetic GTC via Fluid-Kinetic Electron

Dynamic
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GTC Simulation of Energetic Particle Transport

Recent tokamak experiments revive interest of fast ions transport induced by
microturbulence [Heidbrink & Sadler, NF94; Estrada-Mila et al, PoP06; Gunter et al, NFO7]

Radial excursion of test particles found to be diffusive in GTC global simulation
of 1on temperature gradient (ITG) turbulence

Detailed studies of diffusivity in energy-pitch angle phase space

Diffusivity drops quickly at higher particle energy due to averaging effects of larger
Larmor radius/orbit width, and faster wave-particle decorrelation

NBI ions: lower diffusivity for higher born energy

Transport of Energetic Particles by Microturbulence in
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GTC simulations of Toroidal Momentum Transport

time averaged momentum fiux (t=[500,1000] L.Av,)
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Momentum flux for various rigid rotation cases
Angular velocity: o,=(oy+o,r/a)v/R,

initial and perturbed momentum profile at t=1000L. /v,
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Sheared angular velocity case with
0,=(0.2-0.4r/a)Ry/v,

[. Holod and Z. Lin

Constant angular velocity (rigid rotation case):
e inward momentum flux (pinch);

e redistribution of momentum (spinning up towards the center)

Gyrokinetic particle simulations of
toroidal momentum transport, I. Holod and
Z. Lin, Phys. Plasmas 15, 092302 (2008).

Sheared rotation case

Flux separation: subtracting pinch contribution
from the total flux gives diffusive flux

Pr= zgi“/zi ~0.2~0.7

GTC Simulation results consistent with a
guasilinear theory, which shows that Pr<1
iIf the ratio of particle’s resonant energy to
the thermal energy >1.

UClIrvine




Conclusion

'Electron heat transport transits from Bohm to GyroBohm scaling when
increasing system size.

Zonal flow is important in regulating TEM turbulence for the applied parameters.
The shearing time is much smaller than other kinetic and fluid time scales and
provides effective shielding.

Elongated radial streamers enable electrons travels tens of gyroradii (mesoscale)
in the radial direction and thus smooth out the local feature of electron transport—
due to weak toroidal precession detuning. lon transport in CTEM is driven by
local intensity of EXB drift.

Two kinds of eddies coexist and both contribute to transport. The existence of
mesoscale eddies leads to GyroBohm - Bohm for small size device.

Energetic particle transport --- High energy particle has less diffusivity due to
large orbit width averaging effects, and faster wave-particle decorrelation

Momentum transport has an inward pinch flux, and the measured Pt number
consistent with qusilinear theory estimates
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ES Fluid-Kinetic Hybrid Model (1)

Electron drift electron equation
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Gyrokinetic poisson equation

Expansion

. ((6)- (6))=4e((sn,) — (sn,))= 4me(an,)— (n,))
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