
AbstractAbstract

Vendors of high performance computers are converging towards an
architecture based on tightly-coupled clusters of shared memory nodes.
A new style of parallel programming is required to take full advantage
of the available computing power, in order to achieve the best
scalability.This new style uses a mixed model of thread-based parallelism
and message passing. The former, which has very low overhead, is used
within each shared memory node, while the latter is needed for inter-node
communications. In this work, the mixed-model method was applied to add
a new level of parallelism to the 3D gyrokinetic code developed at PPPL to
study microturbulence in magnetized plasmas[1]. Various performance
issues are discussed as well as scalability and implementation.

[1] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, and R..B. White, Science
281, 1835 (1998). This work is supported by DOE Contract No. DE-AC02-
76CH03073 (PPPL), and in part by the Numerical Tokamak Turbulence
Project.

Gyrokinetic Toroidal CodeGyrokinetic Toroidal Code

• Description:
– Particle-in-cell code (PIC)

– Gyrokinetic simulation of microturbulence [Lee, 1983]

– Fully self-consistent

– Uses magnetic coordinates (ψ,θ,ζ) [Boozer, 1981]

– Guiding center Hamiltonian [White and Chance, 1984]

– Non-spectral Poisson solver [Lin and Lee, 1995]

– Low numerical noise

– Full torus (global) simulation

Geometry & CoordinatesGeometry & Coordinates

• Field-line following coordinates
– (ψ,α,ζ) ⇒ α = θ − ζ/q
– larger time step: no high order k||modes

– order of magnitude saving of computer time

ζζζζ

θθθθ

Poloidal Grid: unstructured meshPoloidal Grid: unstructured mesh

• Gives uniform resolution (constant volume grid cell)

• Smaller number of grid points to describe system

•

• •
•

••

•
•

•
• •

•

•
•

•

• •
•

•

•
•

•••••
•

•
•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

••
•

•

• •

•
•

•
•

•

•

•
•

•

Structured Unstructured

Original Code ParallelizationOriginal Code Parallelization

• Domain decomposition:
– each processor holds a section of the toroidal geometry

– each particle is assigned to a processor according to its
position

• Communication between processors is done with
Message Passing Interface (MPI)

• Initial memory allocation is done locally on each
processor to maximize efficiency

• Uses standard MPI calls so the code runs on most
parallel computers

Efficient Communication SchemeEfficient Communication Scheme

PE0

PE1PE2

PE3

step 1

PE0

PE1PE2

PE3

step 2

MPI Scaling for GTCMPI Scaling for GTC

1 2 4 8 16 32
Number of processors

0

10

20

30

40
S

pe
ed

up

MPI speedup results for GTC
(mstep=1000, mparticle=10

6
)

Measured speedup

Ideal speedup

New Level of Parallelization?New Level of Parallelization?

• MPI scaling is almost perfect so WHY do we need
to add a new level of parallelization???
– Landau damping puts a limit on the number of modes in
the direction parallel to the B field (toroidal direction):
⇒ no high order k||modes!!!

– The useful resolution along the field lines is about 64 grid
points: a larger number of grid points would not add any
relevant physics

– Domain decomposition in the toroidal direction is thus
limited to around 64 domains (= 64 processors)

– To use a greater number of processors efficiently, we
need to add a level of parallelization...

Why Mixed-Mode?Why Mixed-Mode?

• VERY easy to implement at loop level

• Most high performance computers now have a
shared memory architecture (SGI Origin 2000, IBM
SP, CRAY J90,...)

• Low overhead thread-based parallelism

• Low latency/high bandwidth communications
between threads via shared memory

• Can be used within each MPI process

• Save memory: no need for ghost cells...

Approach to loop-level parallelizationApproach to loop-level parallelization

• STEPS:
– Identify loops appropriate for parallelization

– use analysis tools to determine the percentage of work
done inside those loops (work which will be done in
parallel)
⇒ examples of such tools on the SGI Origin 2000 (IRIX) are
SPEEDSHOP Pro and PERFEX

– use Amdahl’s law to determine the maximum theoretical
speedup to expect

– Decide if it is worth the effort...

Timing of GTC’s subroutinesTiming of GTC’s subroutines

• Timing of the most important subroutines by using SPEEDSHOP pro
• 88% of the calculation time is spent inside charge, pusher, and poisson

--
Function list, in descending order by time
--
[index] secs % cum.% samples function

[1] 4938.945 40.9% 40.9% 4938945 charge
[2] 4852.051 40.2% 81.1% 4852051 pusher
[3] 828.398 6.9% 88.0% 828398 poisson
[4] 404.091 3.3% 91.4% 404091 shift
[5] 395.813 3.3% 94.6% 395813 __libm_rcis
[6] 232.287 1.9% 96.6% 232287 __expf
[7] 198.840 1.6% 98.2% 198840 smooth
[8] 162.687 1.3% 99.6% 162687 field
[9] 14.336 0.1% 99.7% 14336 load

[10] 12.155 0.1% 99.8% 12155 memcpy
[11] 3.497 0.0% 99.8% 3497 C06FAY
[12] 2.602 0.0% 99.8% 2602 poisson_initial

Refine timings to loop-levelRefine timings to loop-level

• Charge:
– 1 loop over "mp" (number of particles in the domain) : 98.7% of

the subroutine work

• Pusher:
– 3 loops over "mp", 2 of them contribute at every time step: 81 -

95% of the work

• Poisson:
– 1 loop over number of toroidal grid points in domain: 99.5% of

work in subroutine

• TOTAL PARALLEL WORK IS ABOUT 84% ON
AVERAGE BUT CAN GO UP TO 87%

Amdahl's LawAmdahl's Law

• Speedup(n) = 1/[(p/n) + (1-p)] where n is the number of
processors and p the fraction of parallel work

OpenMP parallel directivesOpenMP parallel directives

• What is OpenMP?
– “The OpenMP Application Program Interface (API) supports multi-

platform shared-memory parallel programming in C/C++ and Fortran
on all architectures, including Unix platforms and Windows NT
platforms. Jointly defined by a group of major computer hardware
and software vendors, OpenMP is a portable, scalable model that
gives shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms ranging
from the desktop to the supercomputer” (from
http://www.openmp.org)

• We used the OpenMP directives to parallelize the
biggest loops (4 of them) in GTC

OpenMP example of loop-level
parallelization

OpenMP example of loop-level
parallelization

• Subroutine “charge”: loop over the particles inside an MPI
domain

!$omp parallel do private(psitmp,thetatmp,zetatmp,weight,&

!$omp&rhoi,r,ip,jt, ipjt,wz1,kk,wz0,larmor,rdum,ii,wp1,wp0,&

!$omp& tflr,im,tdum,j00,wt10,wt00,j01,wt11,wt01,ij)

do m=1,mp

psitmp=phase(1,m)

thetatmp=phase(2,m)

zetatmp=phase(3,m)

weight=phase(5,m)

rhoi=phase(6,m)*g_inv

...

enddo

How does it work?How does it work?
MIXED-MODE CODE

MPI_init (4 processes)

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

(4 threads)

OpenMP
Loop

(4 threads)

Start
threads

Merge
threads

What we did…What we did…

• We parallelized the 4 loops with simple OpenMP directives

• Compiled and run on 2 different shared memory
supercomputers:
– 64-processor SGI Origin 2000 “Hecate” at Princeton

⇒ 32 nodes with 2 processors/node but fully shared memory

– 1,152-processor IBM SP “Blue Horizon” at the San Diego
Supercomputing Center (SDSC)
⇒ 144 nodes with 8 processors/node

• Ran a fixed-size problem with 1 and 2 million particles, 1
MPI process, and 1, 2, 4, 8 OpenMP threads (also 16 threads
on the Origin 2000)

OpenMP Scaling for GTCOpenMP Scaling for GTC

1 2 4 8 16
Number of processors

1.0

2.0

3.0

4.0

S
pe

ed
up

Loop−level OpenMP speedups
Comparison between IBM SP and SGI Origin 2000

IBM SP−2M particles

IBM SP−1M particles

SGI O2k−1M particles

Comparison with Amdahl’s lawComparison with Amdahl’s law

• Our timing analysis told us that the maximum fraction of
parallel work in the 4 main loops was 87%. How do the best
scaling compare with Amdahl’s law?

4.24.18

2.92.84

1.81.72

Amdahl’s law
with p=0.87

IBM SP with
2M particles

Number of
processors

Results of OpenMP scalingResults of OpenMP scaling

• With 2 million particles, the IBM SP gives a scaling
very close to the maximum theoretical scaling given
by Amdahl’s law.

• With 1 million particles, the SP results are not quite
as good but still excellent.

• The SGI Origin 2000 has very bad scaling when we
use more than 2 processors…

WHY???

Why is the IBM SP so much better?Why is the IBM SP so much better?

• Each SP node has a true SMP “Symmetric
Multiprocessing” architecture:
– each processor on the node has the same access to the
local memory (through 2 levels of cache)

– all the communications between threads are done through
local memory on the node

• The Origin 2000 has a NUMA “Non Uniform
Memory Access” architecture
– each processor can access (and address) the memory of
ALL the nodes on the computer

– The user has very little control over communications
between threads (= non local)

Origin 2000 NUMA architectureOrigin 2000 NUMA architecture

• The operating system takes care of communications between
nodes. As far as the user is concerned, the Origin 2000 is one
big shared memory machine.

IBM SP true SMP nodesIBM SP true SMP nodes

• Each of the 8 processors on a SMP node of Blue Horizon has the same
link to the local memory but cannot address the memory of other nodes

CPU
0

CPU
1

CPU
2

CPU
3

CPU
4

CPU
5

CPU
6

CPU
7

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

BUS

MEMORY

ConclusionsConclusions

• Mixed-mode parallelization is a good way to take
advantage of the shared memory nodes that are now
used in most MPP computers.

• Loop-level parallelism is easy to implement with
the OpenMP API but very “fine-grained”.

• Parallel speedup is limited by the amount of work
contained in the loops.

• The speedup agrees with Amdahl’s law as long as
the threads are accessing only their caches and the
local memory.

