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Bifurcation Analysis of Low Dim.
Model Predicts Transition
A low dimensional dynamical model is a reduction of a fluid system (infinite degree of
freedom) to a system of rate equations of some macroscopic variables described by
coupled ODEs (few degree of freedom).

Recently, Ball et al. (2002) derived a low dim. model for confinement transitions by
integrating the reduced MHD equations. The model consists of three macroscopic state
variables: P is the potential energy production, N is the turbulent kinetic energy, F is the
shear flow kinetic energy,

ε
dP

dt
= q − γPN (1)

dN

dt
= γPN − αFN − βN2 (2)

dF

dt
= αFN − µ(P, N)F + ϕF 1/2 (3)

Model provides economical tool to predict transitions over parameter space

Requires validation against numerical simulation and/or real experimental data
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Hasegawa-Wakatani Model

HW model describes evolution of density fluctu-
ation n and vorticity ζ = ∇2ϕ ( ϕ: electrostatic
potential)

∂
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ζ + {ϕ, ζ} = α(ϕ − n) − Dζ∇

4ζ
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Dζ and Dn are dissipation coefficients
κ ≡ −∂/∂x ln n0
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Modified Hasegawa-Wakatani Model

Resistive coupling term comes from parallel electron response
∂jz/∂z = 1/η∂2(ϕ − n)/∂z2 (Ohm’s Law)

Zonal components subtracted from resistive coupling term since the zonal
components (ky = kz = 0) do not contribute to this term [Smolyakov et al (2000)]

α(ϕ − n) −→ α(ϕ̃ − ñ)

Non-zonal ·̃ and zonal components 〈·〉

ϕ̃ = ϕ − 〈ϕ〉, ñ = n − 〈n〉

〈f〉 =
1

Ly

Z

fdy (f = ϕ or n)

Modified HW model
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Stability Diagram Provides Indication
of Transition Points
Stability threshold in Dζ (dissipation) – κ (drive) space
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Strong drive (large κ) causes strong instability, which can be stabilized by strong
dissipation (large Dζ )
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Algorithm to Solve MHW Model

Numerical simulation solves MHW model in the slab geometry

Box size L, determined by smallest wavenumber ∆k = 0.15 [(2L)2 = (2π/∆k)2]

Periodic boundary in y direction; periodic or Dirichlet boundary in x direction
eg. Dirichlet condition in x

ϕ(x = ±L, y) = 0, n(x = ±L, y) = 0, ζ(x = ±L, y) = 0

Time stepping algorithm is a 3rd order explicit linear multistep method. The
method for dx/dt = f(t, x) is expressed by

11

6
xn−3xn−1+

3

2
xn−2−

1

3
xn−3 = 3f(tn−1, xn−1)−3f(tn−2, xn−2)+f(tn−3, xn−3)

Finite difference method is used for spatial discretization

Poisson bracket term evaluated by the Arakawa’s method (Arakawa (1966))

Implemented on the APAC SGI Altix 3700 Bx2 cluser in ANU
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Zonal Structure Generated in MHW
Model
Saturated state of electrostatic potential ϕ

Modified HW Original HW

Zonally elongated structure is clearly seen in MHW mode

Workshop on Long Time Simulations of Kinetic Plasmas – p.7/11



Zonal Flow Suppresses Transport

Time evolution of kinetic energy and transport for modified and unmodified HW model
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Zonal flow components dominates kinetic energy in MHW model

Once zonal flow is generated, transport level is significantly suppressed
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Sawteeth Like Behavior Observed in
Weaker Drive Case (κ = 0.1)
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Instability → Energy exchange between kinetic and potential energy → Resisitve
dissipation (parallel motion) [relatively large adiabaticity]

Kinetic energy and potential energy are comparable
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Energy Partition in Bursting Events
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Summary and Conclusion

We have performed simulations of the modified Hasegawa-Wakatani model.

Modification of the Hasegawa-Wakatani model is essential to generate zonal flows.

Long time simulation shows sawteeth like behavior in low κ (weak drive) case.

In bursting events, potential energy is comparable to zonal kinetic energy.
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