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Outline

1. Theoretical/computational basis for predicting Alfvén Eigenmode (AE)
stability in burning plasmas

2. Observations of low-frequency AEs in NSTX, and Toroidicity induced
AE (TAE) similarity experiments on NSTX and DIII-D - most unstable
mode scaling is confirmed

3. NOVA-K numerical modeling of TAE stability:

� thresholds and unstable mode numbers in NSTX/DIII-D

� projection to ITER: TAEs are unstable in NBI heated plasma

4. Sub- ion cyclotron frequency modes: Compressional- and new Global
shear- Alfvén Eigenmodes (CAE/GAE) in NSTX

� observations of new shear Alfvén branch

� developing stability theory and nonlinear modeling tools



Unstable high-n TAEs expected in large scale burning
experiments
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TAE (most global AEs, Cheng PF,’86) modes are
likely to limit fusion product confinement in BP.

Theory predicts: n range of most unstable TAEs
due to FOW effects: (Berk PL,’92, Fu PF, ’92)
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Bursting TAEs often result in beam ions losses in NSTX
� Neutron flux drops by 10-15%

� Period of neutron drops is
10ms

� Bursting TAEs: fast amplitude
change

� Edge amplitude:
up to δB � B � 3� 10 � 4

� Multiple modes are present

(Fredrickson PoP,’03)
also see NSTX session KO1

(wednesday)



NSTX and DIII-D similarity experiments are designed to
validate theory

R a B0 βi0 q0 βb0 vb0 a nmax

� m � � m � � T � � % � � % � vA0 ρb � α0

NSTX 0.77 0.6 0.5 1.1 1.6 4.2 1.85 6 1

DIIII-D � 1.63 0.6 0.63 2.6 0.9 4.4 1.5 6 4

ITER 6.2 2 5.3 2.2 1.2 1.2 1.4 50 15

� r � a � 1 � 2 � 0.7(α’s) 1.8 40 15

� in NSTX/DIII-D similarity experiment

DIII-D/NSTX similarity experiment (W. Heidbrink PPCF,’03) is designed to
check theory

Use (1) similar plasmas, (2) tangential NBI injection angle, (3) same
NBI energy Eb0 80keV , (4) similar trapped to passing particle ratio

The major radii are different in NSTX and DIII-D

Safety factor profiles are different
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Observations confirm theory predictions
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� Most unstable mode numbers (larger amplitude at the edge) scale
with a � q2.

� Modes have low edge amplitude δB � B� 10 � 5.
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Simulate linear TAE stability with NOVA codes

NOVA (Cheng JCP,’87) and NOVA-K (Cheng PhR,’92) codes are used to
compute TAE stability:

� NOVA uses TRANSP output for plasma parameters

� Mode structure is computed within ideal MHD (NOVA)

� Perturbative kinetic mode analysis is performed with NOVA-K code

� Fast ion drive includes: finite orbit width (FOW) and FLR effects
(Gorelenkov PoP,’99)

� Damping mechanisms included are

– ion/electron Landau

– radiative

– trapped electron collisional



Trapped/passing particle ratio is similar in both experiments
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� Similar trapped/passing particle ratio achieved by adjusting the injection angle

� Distribution function is computed by TRANSP

� Pitch angle (χ � v � � v) width is changing as particles are thermalized

� In NOVA beam distribution is approximated into a form

fb � ψ � v � χ �
� n � ψ �

e� � χ� χ0 � 2 � δχ2 � ψ � v �

v3 � v3
� � ψ �

� Distribution function is critical for comparison with experiments



The trend of unstable TAE’s n-dependence is recovered by
NOVA-K

NSTX

DIII-D

0 2 4 6 8
−0.1

−0.05

0

0.05

0.1

0.15

n

γ/
ω

stable 

unstable 

2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

n

unstable 

stable 

� no damping, � - with damping

� TAEs excitation thresholds are reproduced for medium-n numbers

� NOVA-K with isotropic distribution function does not predict observed
unstable modes

� Main damping mechanisms are:
– ion Landau damping (expected to be dominant in ITER)
– radiative damping

� Stabilization of TAEs at higher end for n is due to FOW effects and higher
damping
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Estimate of extra damping due to uncertainties in
measurements/stability model

Experimental results:

� Near steady TAE amplitude evolution in NSTX and DIII-D

� Low amplitude δB � B� 10 � 5at the plasma edge

Theoretical results:

TAE edge amplitude is close to the peak amplitude (global modes)

NOVA-K applies nonlinear marginal stability theory (Berk PF,’90,
PRL’96) If TAEs are near threshold, then γd γdx γb 1

Add new damping term (linear or nonlinear) γdx γb γd

γdx is extra damping due to uncertainty in stability model/experimental
measurements



Estimate of extra damping due to uncertainties in
measurements/stability model

Experimental results:

� Near steady TAE amplitude evolution in NSTX and DIII-D

� Low amplitude δB � B� 10 � 5at the plasma edge

Theoretical results:

� TAE edge amplitude is close to the peak amplitude (global modes)

� NOVA-K applies nonlinear marginal stability theory (Berk PF,’90,
PRL’96) � If TAEs are near threshold, then � � γd� γdx � � γb� 1

� Add new damping term (linear or nonlinear) � γdx � � γb � γd

� γdx is extra damping due to uncertainty in stability model/experimental
measurements



Uncertainty in the damping rate is less than 20% of the drive for
medium-/high-n modes

NSTX DIII-D
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Low-n modes:

� Alfvén continuum gap is open � no continuum damping is present

� very sensitive to details of q � profiles (global modes)
– Small change in q or density profile may increase the damping of

low-n modes

Medium-/high-n modes:

more localized less sensitive to details of q /density profiles

gives small uncertainty in stability model/experimental measurements
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� very sensitive to details of q � profiles (global modes)
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Medium-/high-n modes:

� more localized � less sensitive to details of q � /density profiles

� gives small uncertainty in stability model/experimental measurements



Alphas and NBI ions both contribute to TAE instability in ITER

Gorelenkov NF,’03
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� In ITER 1MeV tangentially injected beam ion TAE drive is comparable with
the α� drive.

– Lowering NBI energy to 0� 5MeV strongly reduces beam drive

– 0� 5MeV energy is enough for good beam penetration

� In ITER ion temperature Ti0 � 20keV seems to be marginal for TAE stability
when both alphas and NBI ions are included. Plasmas with Ti0� 20keV are
TAE unstable.



Outline

1. Theoretical/computational basis for predicting Alfvén Eigenmode (AE) stability in
burning plasmas

2. Observations of low-frequency AEs in NSTX, and Toroidicity induced AE (TAE)
similarity experiments on NSTX and DIII-D - most unstable mode scaling is confirmed

3. NOVA-K numerical modeling of TAE stability:

� thresholds and unstable mode numbers in NSTX/DIII-D

� projection to ITER: TAEs are unstable in NBI heated plasma

4. Sub- ion cyclotron frequency modes: Compressional- and new Global
shear- Alfvén Eigenmodes (CAE/GAE) in NSTX

� observations of new shear Alfvén branch - GAE

� developing theory:
– linear theory: analytical and numerical
– nonlinear modeling tools: hybrid HYM code



New Features of Sub- Ion Cyclotron Instability Spectrum

Compressional AE (CAE) were observed in NSTX (Fredrickson PRL, ’01,
Gorelenkov NF,’02)
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intersect � characteristic of shear Alfvén modes (vs. CAEs)

Dashed curves: GAEs with dispersion ωGAE vA0 m nq0 q0R

Identify new modes as Global Alfvén Eigenmodes (GAE), (Appert PlP,’82)
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Global Alfvén Eigenmode structure by NOVA code
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� One poloidal mode number is dominant

� GAEs are radially localized

� Many radial GAEs may exist below the continuum

� m’s GAEs can interact with the m� 1 continuum � damping



GAE stability theory

GAE drive (Gorelenkov NF,’03):

� Velocity space gradient - bump on tail in v � direction due to tangential NBI injection in
NSTX

� Doppler shifted particle - wave cyclotron resonance: ω � ωcb � k � v � � k � vdb� 0

� GAEs are unstable if 2 � � ω � ωcb � � v � b0 � vA � � k � � k �� � 4

– and bump on tail width is less δv � b � 2vAωcb � ω

Main GAE damping is continuum damping (VanDam FT,’90):

For high-m GAEs it is small (Gorelenkov NF,’03)

γd

ω

�

�
r0

rs �
2m 	 δ



where r0 is the mode location, rs is the minor radius of m � 1 resonance surface (continuum),
δ� O � 1 �



HYM hybrid code for nonlinear GAE/CAE study

Model (Linearized and nonlinear):

� Background MHD + kinetic fast ions

� Fluid electrons + particle background ions + fast ions

Method:

� explicit time scheme, 2nd order accuracy

� 4th order spatial derivatives

� particles are treated with the δ f scheme

� anisotropic equilibrium (Belova PoP,’03)



HYM hybrid code finds unstable modes in linearized δ f run



HYM simulations show GAE mode structure

Mode has characteristics of GAE with n � 4, m � 2

It has large k � , and significant compressional component: δB � � δB � � 3



low-n GAEs are found in simulations for NSTX parameters



SUMMARY
� Linear theory and numerical tools such as NOVA/NOVA-K predict TAE

instability in burning plasmas, and have been validated by
experiments in NSTX and DIII-D

– Most unstable mode number scale with the minor radius of the
plasma

– NOVA predicts TAEs to be unstable in ITER with NBI

� Observed sub-cyclotron oscillations in NSTX are identified as Global
shear Alfvén Eigenmode Instability driven by NBI ions

� GAEs are driven via the Doppler shifted cyclotron resonance with
beam ions by the positive gradient in velocity space v � direction
(“bump on tail” distribution).

� Both hybrid HYM code and NOVA code models agree with analytical
theory on GAE mode structure and dispersion



Low- n modes are very sensitive to details of q- profiles

NSTX DIII-D
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� Gap is open � no continuum
damping is present

� Small change in q or density
profile may increase the damp-
ing of low-n modes


