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Abstract

We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation

of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even

local damping. A single model equation for the local turbulence intensityI(x; t) includes the effects of

local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of

turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into

the linearly stable zone occurs with the property of rapid progression at smallt, followed by slowersub-

diffusiveprogression at late times. The turbulence radial spreading into the linearly stable zone reduces the

turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the�� � �i=a

to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with

a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front

propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by

local dissipation in the linearly stable region.

1. Introduction

Achieving understanding of turbulent transport is necessary for the design of an economical advanced
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tokamak fusion reactor. In recent years, progress in experiment, theory and computation has been dramatic,

yet the ‘Holy Grail’ of predictive capacity by other than brute-force, case-by-case direct numerical simula-

tion, remains elusive. Serious challenges remain due to the fact that virtually all models of fluctuation levels

and turbulent transport are built on an assumption oflocal balanceof linear growth with linear damping and

nonlinear coupling to dissipation. Here, ‘local balance’ refers to balance at a point or in a region compara-

ble in extent to the modal width. Such models thus necessarily exclude mesoscale dynamics which refers

to dynamics on scales larger than a mode or integral scale eddy size, but smaller than the system size or

profile scale length. In particular, transport barriers, avalanches, heat and particle pulses all are mesoscale

phenomena[1, 2, 3].

In this paper, we identify and study in depth the simplest, most minimal problem in the mesoscale

dynamics category before proceeding to consider more complicated examples. In this case, the ‘minimal

problem’ is that of the spatio-temporal propagation of a patch of turbulence from a region where it is locally

excited to a region of weaker excitation, or even local damping. This process can be described by a single

model equation for the local turbulence intensityI(x; t), which includes the effects of local linear growth

and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy

induced by nonlinear coupling. These effects combine to give an energy equation loosely of the form

@I

@t
� @

@x
�(I)

@I

@x
= (x)I � �I1+�; (1)

the terms of which correspond to nonlinear spatial scattering (i.e. typically�(I) � �0I
� where� = 1

for weak turbulence, and� = 1=2 for strong turbulence), linear growth and damping, and local nonlinear

decay, respectively. Here� is a nonlinear coupling coefficient. Note that� and�0 could be functions of

radius. This energy equation is the irreducible minimum of the model, to which additional equations for

other fields, and contributions to dynamics which feedback onI , may be added. Note that the above energy

equation manifests the crucial effect of spatial coupling in the nonlinear diffusion term. This implies that

the integrated fluctuation intensity in a region of extent4 about a pointx (i.e.
R x+4
x�4 I(x0)dx0) can grow,

even for negative(x), so long as�(I)@I=@xjx+4x�4 is sufficiently large. Alternatively,I can decrease,even

for positive(x), should�(I)@I=@xjx+4x�4 besufficiently negative. Thus, theprofileof fluctuation intensity

is crucial to its spatio-temporal evolution. These simple observations nicely illustrate the failure of the

conventional local saturation paradigm[4], and strongly support the argument that propagation of turbulence

energy is a crucial, fundamental problem in understanding confinement scalings for fusion devices in which

growth and damping rate profiles vary rapidly in space.

While the radial spreading of turbulence has been widely observed in previous global nonlinear gyroki-
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netic and mode coupling simulations[5, 6, 7], its significance has not been widely recognized. Its effect on

turbulent transport scaling has been addressed only recently[8]. In that work[8], we conjectured that the

turbulence radial spreading into the linearly stable zone can reduce the turbulent intensity in the linearly

unstable zone, and introduce an additional dependence on the�� � �i=a to the turbulent intensity which is

otherwise determined by local physics. Since the ion thermal diffusivity�i was observed to be proportional

to I for the weak turbulence case in the previous gyrokinetic simulation[9], this, in turn, can cause a devia-

tion from gyroBohm transport scaling which was expected from the local turbulence characteristics (i.e., a

radial correlation length about�r ' 7�i, independent of the system size). The basic features of analytic,

dynamical model of turbulence[10] has been previously published in Ref. [11], In this paper, we present a

more complete version and more detailed comparions to gyrokinetic simulation results[8].

The remainder of this paper is organized as follows. In Section 2, we propose a nonlinear diffusion

equation as the simplest model for the problem of turbulence spreading, and present detailed analytic solu-

tions of this nonlinear diffusion equation. Sec.3 contains the effects of radial spreading on transport scaling

and comparisons to recent global gyrokinetic simulation results. Sec.4 consists of conclusions.

2. Dynamics of Turbulence Spreading

Another aspect of the dynamics which falls outside the traditional “local balance” paradigm of Kadomt-

sev, et al.[4] is illustrated by the equation forI(x). First, turbulence energy propagation is intrinsically

non-diffusive, since�(I) increases withI . This is easily seen by observing that for turbulent diffusion,

�(I) = �0I
�, so that the natural diffusive scalings for the width of a turbulent patch are`2 � �0I

�t

andI` = Q0 � I0`0. It thus follows that the self-similarity variable isx=`(t) = x=(�0Q
�
0 t)

1=(2+�), so

a turbulent patch spreads as4x � (�0Q0
�t)1=(2+�) in the absence of growth or dissipation. Contrary

to conventional wisdom, this actually corresponds tosub-diffusivepropagation, which has the property of

rapid progression at smallt, followed by slower progression at late times. Thus, the rapid re-adjustment and

spatial spreading of turbulence intensity profiles observed in several gyrokinetic particle simulations[5, 6, 8]

are quite likely symptoms of turbulence propagation.

Focusing on the role of nonlinear diffusion in the weak turbulence regime (with� = 1 in Eq. (1)) as

observed in the gyrokinetic simulations[8, 9], we begin our analysis using the following nonlinear partial

differential equation:
@

@t
I = (x)I � �I2 + �0

@

@x
(I

@

@x
I) (2)

HereI � h( e�Te )2i is the envelope of the turbulence intensity in the energy containing range inky exclud-
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ing the zonal flows withky = kz = 0, (x) is the “local” excitation rate of the instability, for instance

the ion temperature gradient (ITG) driven mode,x is a radial coordinate,� is the local nonlinear coupling

term[12]. For a diffusion coefficient of turbulence�i, we take�i � �0I with an explicit proportionality

to I as observed in the previous global nonlinear gyrokinetic simulation[9]. We note that Eq. (2) is sim-

ilar to a generalizedK � � model for its direct inverse process, namely transport barrier propagation and

broadening[13, 14, 15].

First we review the local solution. In the absence of the nonlinear radial diffusion given by the last term,

we can integrate Eq. (2) in time with an initial profileI(x; 0)< (x)
� to obtain,

I(x; t) =
(x)

�
=(1 +

(x)
� � I(x; 0)

I(x; 0)
e�(x)t): (3)

Eq. (3) describes the time evolution of the intensity towards a nonlinear saturation. In the region > 0,

I initially grows exponentially with a linear growth rate(x), then saturates at a finite level given by(x)
� .

However in the region where < 0, this local solution predicts that the fluctuationvanishes(I ! 0).

Now we study in detail how the nonlinear diffusion term in Eq. (2) allows fluctuations to spread into a

zone where < 0. In the region where(x) ' 0 andI << 1, Eq. (2) simplifies to the following nonlinear

partial differential equation which is also known as the modified porous-medium equation[16].

@

@t
I0 = �0

@

@x
(I0

@

@x
I0): (4)

We consider a smooth radially varying linear excitation rate profile(x) which is similar in shape to the

ones used in a global gyrokinetic simulation of ITG instablities discussed in Refs.[5, 8] in shape. As shown

in Fig. 1, > 0 in the middle forjx� xij < W , xi is the position where(x) is maximum.

0 xi-W xi xi+W x

0

(x)

Figure 1: Local excitation rate(x) as a function of radius.

Then decreases monotonically towards the axis and the edge, becomes0 at x = xi � W and atx =

xi + W , and becomes negative forjx � xij > W . In this paper, we only consider the case where the
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background pressure and(x) do not change in time. This simple case is still relevant for turbulence

dynamics which occurs in a time scale shorter than transport time scale. This also makes comparisons

to the recent gyrokinetic simulations[11] more straightforward. For more challenging problems such as

the formation of transport barriers where the disparity in time scales becomes less obvious, one needs to

extend the theory to a multifield nonlinear system[14, 15, 17, 18] in which evolutions ofE �B flows and

the pressure gradient are included. Gyrokinetic simulation in Ref.[11] shows that the volume integrated

fluctuation intensity saturates in magnitude as the self-generated zonal flows grows to a saturated amplitude

as discussed in detail in Refs.[19, 20]. Then, the radial spreading of turbulence occurs from approximately

t = 8=, while the volume integrated fluctuation intensity stays approximately a constant in time as shown

in Fig. 2. We focus our studies on this later phase.

time (1/γ)

δφ

vEXB

Figure 2: The volume integrated fluctuation intensity (Æ�) saturates in magnitude as the self-generated

zonal flows (VE�B) grows to a saturated amplitude. The radial spreading of turbulence occurs from

approximatelyt = 8=, while the volume integrated fluctuation intensity stays approximately a constant in

time.

For an initial profileI0(x; 0) = �
W (1� (x�xi)2

W 2 )H(W � jx� xij), Eq. (4) has an exact solution[16]:

I0(x; t) =
�

(6��0t +W 3)1=3
(1� (x� xi)2

(6��0t+W 3)2=3
)H(W � jx� xij); (5)

where� is the volume-integrated intensity,H is a Heavyside function. Eq. (5) shows that in the absence of

linear or nonlinear damping (the first term and the second term on the RHS of Eq. (2)), a fluctuation front at

x = xi+(W 3+6��0t)
1=3 will propagate beyondx0 � xi+W indefinitely. (The same comment applies to

another front atx = xi �W which propagates to the left.) The time evolution ofI0 exhibiting a localized

front-like solution described by Eq. (5) is plotted in Fig. 2.
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xi-W xi xi+W x

I0(x; t)

t = 0

t > 0

Figure 3: Eq.(5) describes a propagating localized front-like solution.

We note that the short time behavior of propagation can be characterized by(x � x0)front ' Uxt after

expanding in(x� x0)front=W , withUx =
2��0
W 2 . It is obvious that the expression forUx from our nonlinear

theory is qualitatively different from the radial group velocity of a drift wave. This is one of signatures

which distinguish our nonlinear diffusion theory from the other models which heavily rely on the specific

properties of the drift wave linear dispersion relation[7], or on nonlinear enhancement of dispersion[21]

of the 4-mode system consisting of toroidal eigenmodes and zonal flows[22]. The long term behavior of

propagation issub-diffusive, as discussed previously,

4x � (�0Q0t)
1=3: (6)

The relevant question here is what is the physics mechanism responsible for a saturation of the fluctua-

tion spreading in a linearly stable zone? At a conceptual level, most existing models of turbulent transport

are based on a local balance of excitation and dissipation. For instance, the commonly used local saturation

conditioná la Kadomtsev[4] in which one balances the linear growth rate > 0 and the local nonlinear

damping (i.e., � k2?Dturb) does not apply here. We expect that the fluctuation front would cease to

propagate if the fluctuation energy flux due to radial propagation spread into the linearly stable zone and

was balanced bydissipation. First, we consider the case where the linear damping near the propagating

front ((x) ' �j 0j(x � x0)) is strong enough to play a dominant role in limiting the radial spreading.

The scaling for� can be obtained by balancing the time required for linearly damping the fluctuation at

x = x0 + �, i.e.,Tdamp ' 1
j0 j�

, against the time required for the front to propagate a distance� (which

is shorter than the system size), i.e.,Tprop ' �
Ux

. The resulting scaling with respect to the damping rate

is weaker (� / j 0j�1=2) than that based on a heuristic argument based on the linear toroidal couping,

� / �1damp[23]. Quantitatively, the front stops propagating when the width of spreading� satisfies the

following condition:

@

@T

Z x0+�

x0

dxI0(x; T ) = �
Z x0+�

x0

dx(x; T )I0(x; T ); (7)
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which yields the expression for the width of the radial spreading,�:

�2 ' 12��0
j 0jW 2

: (8)

As expected, higher fluctuation intensity in a linearly unstable zone (�) enhances the radial spreading, while

a strong linear damping reduces it.

We note that depending on the scaling of ion thermal transport in the absence of turbulence spreading,

� / ��0=W , Eq. (8) predicts different scalings of the radial spreading�, with respect to the system

size. These are in broad semi-quantitative agreements with observations from several global gyrokinetic

simulation results[5, 6, 8, 24, 25]. We discuss details in the next section. If the linear damping is sufficiently

weak, the nonlinear coupling to damped modes in the dissipative range could act to limit the range of

turbulence spreading in space. The nonlinear damping is a manifestation of the nonlinear mode coupling

in k-space including the interaction with zonal flows[22, 26, 27]. However, the incoherent noise, which is

ignored in our nonlinear diffusion model in this paper, can also be produced from nonlinear mode coupling

and will likely to significantlyenhancethe range of spreading, in particular near low order rational surfaces.

This effect will be studied in the future publication. With this caveat in mind, our estimation below which

relies on the coherent nonlinear mode coupling only, should be taken as an underestimate of turbulence

spreading. Following a straightforward dimensional analysis, we find that� /
q

�0
� , when the nonlinear

damping saturates the fluctuation propagation.

xi x0 xi + � x

I0(x; t)

dissipation

growth due to

spreading

Figure 4: Fluctuation front ceases to propagate if the fluctuation energy

flux due to radial propagation is balanced by dissipation.

3. Effects of Turbulence Spreading on Transport Scalings

While the radial spreading of turbulence has been widely observed in the previous global nonlinear simulations[7,

6, 5, 24, 25], its effect on turbulent transport scaling has not been addressed until recently[8]. In that work[8],
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we conjectured that the radial turbulence spreading into the linearly stable zone can reduce the turbulent in-

tensity in the linearly unstable zone, and introduce an additional dependence on the�� � �i=a to the turbu-

lent intensity which is otherwise determined through a local physics. Since�i / I for the weak turbulence

case as observed in the previous gyrokinetic simulations[9], this, in turn, can cause a deviation from the

gyroBohm transport scaling which was expected from the local turbulence characteristics (i.e.,�r ' 7�i)

only. The basic features of analytic dynamical model of turbulence spreading[10] and progress toward a

theoretical underpinning has been published in Ref. [11, 28]. In this section, we present the specific pre-

dictions from our present nonlinear diffusion model and compare them to the recent gyrokinetic simulation

results[29]. Eq. (5) shows that in the absence of dissipation, a fluctuation front movement into the linearly

stable zone by a radial width� reduces the peak fluctuation intensity atx = xi to

I(xi; T ) = I(xi; 0)=(1 +
�

W
): (9)

Since we are interested in the regime where�i / I [9], we obtain

�i = �i0=(1 +
�

W
); (10)

where�i0 is the ion thermal diffusivity in theabsenceof the radial spreading of turbulence.

Based on the following estimation, we now argue that the reduction of the peak fluctuation intensity due

to dissipation without the radial spreading of fluctuations is exponentially small in the limitW=�i >> 1:

We seek a steady state solution of Eq. (2) by for a(x) profile which ispiece-wise constantin radius,

��0 @

@x
(I

@

@x
I) = (x)I � �I2; (11)

where(x) = 0 > 0; for jx � xij < W and(x) = �jdj < 0; for jx � xij > W . One finds that for a

piece-wise constant profile, Eq. (11) can be written as a perfect derivative inx by multiplying both sides

by I @I@x .

��0
4

@

@x
(
@

@x
F )2 =

2

3

@

@x
F 3=2 � �

2
F 2; (12)

hereF = I2. An integration of Eq. (12) in radius with boundary conditions@@xI(x) = 0; at x = xi and

I(x) = 0 for jx � xij ! 1 guarantees a steady state solution for a large enough system size. Here, we

estimate the reduction of peak turbulence intensity (atx = xi) due to a dissipation atjx � xij > W in

the absence of radial spreading. By taking a limit of very strong linear dampingjdj ! 1, we obtain the

following relation by integrating Eq. (12) fromx = xi tox,

�0
4
(
@

@x
F )2 =

2

3
0(F (xi)

3=2 � F 3=2)� �

2
(F (xi)

2 � F 2): (13)
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By integrating Eq. (13) inF fromF (xi+W ) = 0 toF (xi) after undoing the square, we obtain the following

integral relation betweenW=�r andF (xi),Z F (xi)

0

dFq
80
3�0

(F (xi)3=2 � F 3=2)� 2�
�0
(F (xi)2 � F 2)

= W; (14)

here we used the fact thatI(x) = 0 at jx � xij = W: A simple inspection shows that the integral exhibits

a logarithmic divergence forW !1 limit in which the fluctuation intensity saturation level is determined

by the local physics, that is,F (xi) ' 0=�. An asymptotic analysis yields that

F (xi) ' 0
�
(1� O(exp(�W=�r))); (15)

where�r � p
�0=� is the radial correlation length which scales with the ion gyroradius. We, therefore,

conclude that the reduction of intensity in the linearly unstable zone at the middle should originate mainly

from the fluctuation spreading.

Having established a relation between the radial spreading and transport scaling in Eq. (10), we discuss

the observations from previous global gyrokinetic simulations and possible relevance of our theoretical pre-

dictions to these simulations[5, 6, 8]. To our knowledge, the first significant numerical study addressing

turbulence spreading has been performed in the context of a global mode couping analysis of toroidal drift

wave[7]. It was observed that the linear toroidal coupling of different poloidal harmonics played a dominant

role in the convective propagation of fluctuations into a region with a zero level background of fluctuations

in most parameter regimes. It is worthwhile to note that Ref. [7] was published before the important role of

the self-generated zonal flows in regulating turbulence in toroidal geometry was fully realized[19]. In a sim-

ilar fashion to the meanE�B flow shear causes decorrelation of turbulence in the radial direction[30, 31],

the random shearing by zonal flows[20, 26] which has not been included in Ref.[7], would make the linear

toroidal coupling much weaker. This is shown by the measured reduction in the radial correlation length

of fluctuations[20] as radially global toroidal eigenmodes get destroyed by the zonal flows in gyrokinetic

simulations[19]. Ref. [7] reports that, when the linear toroidal coupling is suppressed, the fluctuation prop-

agation due to nonlinear mode coupling has been observed to be close to a diffusive process. If we consider

the limited numerical accuracy of the time of flight measurements employed in Ref. [7], this result does not

seem to contradict our prediction of subdiffusive propagation as discussed at the beginning of Sec. II [23].

In the strong turbulence regime considered in Ref. [7] where� = 1=2, we get4x � (�0Q0
1=2t)2=5 which

is difficult to differentiate from the diffusive behavior of4x / t1=2.

We expect that in the presence of zonal flows, thenonlinearradial diffusion remains a robust mecha-

nism responsible for the turbulence spreading while the communication between different poloidal harmon-

ics become relatively ineffective. Now we briefly describe a recent nonlinear gyrokinetic particle-in-cell
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simulations[8, 11] where the self-generated zonal flows regulate turbulence. These nonlinear gyrokinetic

particle-in-cell simulations have been performed with Gyrokinetic Turbulence Code (or GTC) code[19].

Global field line following coordinates have been used to take advantage of fluctuation structures which

align with equilibrium magnetic field lines. However, unlike many quasi-local codes in flux-tube geometry,

GTC does not rely on the ballooning mode formalism which becomes dubious in describing meso-scale

structures[1, 2, 3] in fully developed turbulence. Therefore, realistic radial profile variations can be included

straightforwardly.

The simulation parameters used are based on those from Ref.[32] which uses a simple characterization of

a typical DIII-D H-mode core plasma. A system size (or��) scan is then carried out with other dimensionless

parameters fixed with a radial variation of ion temperature gradient included as shown in Ref. [11]. The

peak value ofR=LT i in the middle is 6.9 which is well above marginality. Towards the axis and the edge

the gradient gets weaker. While the gyrokinetic particle simulations in the mid-90’s[6, 5, 24, 25] showed

that radially elongated eddys, which are closely related to the global toroidal eigenmodes, partially survived

in the nonlinear phase, more recent global simulations showed that self-generated zonal flows break up

the radially elongated eddys[19] and isotropize thek spectrum of fluctuations. The broadening in thekr

spectrum of turbulence[20] in the presence of zonal flows in the simulation is a consequence of random

shearing[20, 26, 33]. Therefore we think it is reasonable to expect that linear toroidal coupling effects

become weaker in the presence of zonal flows. More detailed two point correlation analysis of simulation

data indeed shows that the correlation length of fluctuations scales with ion gyroradius�r ' 7�i, and

these are invariant with respect to the system size. In the nonlinear phase of simulations, fluctuations spread

radially. Their radial extent is approximately25�i or 3 � 4 radial correlation lengths in each direction.

Interestingly, it is independent of the system size, as inferred from Fig. 5[29].

0.0 0.2 0.4 0.6 0.8 1.0
0

16

32

48

64

0

1

2

3

4

I χi

r/a

a=500ρi

a=125ρi

a=250ρi

Figure 5: Fluctuation intensity profiles (I in solid lines) and ion thermal diffusivity (�i in dotted lines),

both in gyro-Bohm unit after nonlinear saturation fora=�i = 125; 250; and500: As the system size gets
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larger, the extent of radial spreading of turbulence into the linearly stable zone gets narrower relative to the

system size. It scales with the ion gyroradius� 25�i[29].

Using the values ofW; �; �0; 
0

and� from simulations, we estimate the predicted scalings and values of

� given in Eq. (8). From the simulations described above,W = x0 � xi = 0:75a � 0:5a = 0:25a,

�i(0:5a; T ) = 1:35 cTieB
�i
LTi

, and(xi) = 0:033 vTi

LTi
for k��i = 0:2 whereI peaks at nonlinear saturation.

Note that0:033 is rather a small coefficient coming from kinetic effects not captured in a heuristic dimen-

sional argument based on a simple fluid picture. We note that radial diffusion of ion heat is not always same

as that of fluctuation intensity. For the estimation of
0

, we use a scaling that / k��i
vTi

R0

( R0

LTi
� R0

Lcrit
) for

smallk��i near the local threshold as suggested by the results from the local ballooning calculation using

the FULL code[34]. For these values mentioned above, Eq. (8) yields� ' 18�i, in the rough range of

fluctuation spreading observed in our simulation,� ' 25�i. Considering the simplicity of our nonlinear

model, this level of agreement is encouraging. If we use the value of� from the simulation, Eq. (10) based

on our simple one dimensional theory yields,

�i / �gyroBohm=(1 + 100��); (16)

which is in rough agreement with the scaling trend observed in the simulations [8]. We also note that a

similar argument based on Eq. (10) can also be used as a possible explanation for the previous observation

of the “worse than Bohm transport scaling” from an early global gyrokinetic simulation[6, 25]. In this

simulation without zonal flows, the radially global toroidal modes with radail width�r / p
W�i can

easily lead toBohmscaling of transport in anidealplasma without the radial spreading of turbulence. Our

theoretical results in Eq. (8) indicate that the width of spreading� / pW�i due to�r / pW�i, although

there has not been a systematic scaling study of the radial spreading in the absence of zonal flows. Following

the same logic, one could deduce that�i / �Bohm=(1 + �=W ) due to the radial spreading of turbulence,

and the resulting transport scaling is worse than Bohm. The observation of the fluctuation radial spreading

in this simulation also suggests that while the zonal flows play a crucial role in regulating turbulence and in

making linear toroidal couping weaker, they don’t seem to play adirect role in either causing or inhibiting

the radial spreading. Another independent global gyrokinetic simulation[5] in the presence of weak zonal

flow shear, has reported a trend that transport scaling is close to Bohm, but tends to change very slowly

from Bohm to gyroBohm as the system size gets larger. This intermediate result from a simulation which

stands between the simulation of Ref.[8] with strong zonal flow shear and the simulation of Ref.[6] without

zonal flows, is also in qualitative agreement with a hypothesis that the radial spreading of turbulence can

change the transport scaling by increasing the volume of the active turbulence zone, and decreasing the local
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fluctuation intensity in the region where the instability is linearly strong.

4. Conclusions

In this paper, we have identified and studied in depth, the simplest, most minimal problem of turbulence

spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where

it is locally excited to a region of weaker excitation, or even local damping. This process is described by

a single model equation for the local turbulence intensityI(x; t), which includes the effects of local linear

growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence

energy induced by nonlinear coupling. The principal results of this paper are as follows:

i) In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property

of rapid progression at smallt, with a characteristic speedUx = 2��0
W 2 , followed by slowersub-diffusive

progression at late times with4x � (�0Q0t)1=3.

ii) The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly

unstable zone, and introduces an additional dependence on the�� � �i=a to the turbulent intensity which is

otherwise determined by local physics. Since�i scales with the turbulent intensityI , this, in turn, can cause

a change in the transport scaling with respect to��. These are in broad, semi-quantitative agreements with

a number of global gyrokinetic simulation results with strong zonal flows[8], with weak zonal flows[5], and

without zonal flows[6].

iii) The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region

is balanced by local dissipation in the linearly stable region. This work provides anewrule of thumb for

determining a local fluctuation amplitude in the linearly stable zone.

It is worthwhile to note that the radial spreading of turbulence discussed here could play a role in toka-

mak plasmas. For instance, large�e as observed with the weak gradients in the core of RS (reversed shear)

plasmas[35, 36, 37], is difficult to reconcile with the conventional linear stability based picture in which a

non-zero fluctuation level is expected only in the region where the linear growth rate is positive.
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