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Introduction

Question:

Does noise enhance or reduce diffusion?

What does noise mean?

In the context of PIC simulation, noise means extra

fluctuations due to Monte Carlo sampling error. See

G. Hu and J. A. Krommes, Generalized weighting

scheme for δf particle-simulation method, Phys.

Plasmas 1, 863 (1994).

Hu & Krommes showed that one can develop a kinetic theory of sampling

noise quite analogous to the classical plasma kinetic theory of fluctuations

due to particle discreteness. (The details will not be discussed here. . . )
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After more than a decade, there is still confusion
[and lots of (oral) noise].

Issue: Role of sampling noise
in gyrokinetic particle simulation

• Assertions: Extra noise should

1. increase turbulent flux;

2. decrease turbulent flux.

• General arguments:

– Increase — more noise ⇒ more dissipation

⇒ more flux (entropy argument)

– Decrease — more noise ⇒ more resonance broadening

⇒ wipe out turbulent drive ⇒ less flux

There are various paradoxes, so it’s easy to get confused.
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A difficulty is that saturated, turbulent, steady states
are not in thermal equilibrium.

Warnings:Warnings:

• Cannot (blindly) use fluctuation–dissipation theorem (FDT).

• There is no simple “thermodynamics” of a nonequilibrium steady state.

Possibilities:Possibilities:

• Generalize FDT ⇒ steady-state spectral balance [entirely nontrivial,

but foundations are well understood, even in the presence of

discreteness/sampling effects (Rose, 1979)]

• Entropy considerations.

I will not resolve anything in this talk. My goals are to

emphasize that one must be careful and that there are

subtleties, but also that a systematic framework doesa systematic framework does

exist for discussing these issuesexist for discussing these issues.
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The standard entropy-balance argument is a red herringred herring,
and can be easily misinterpreted.

General form of the evolution equation for “entropy” S (a certain quadratic

functional of the fluctuations):

∂S
∂t

= κΓ − D. (1)

Here

κ — gradient drive (e.g., L−1
n or L−1

T ) (2a)

Γ — turbulent flux (2b)

D — dissipation (2c)

The Entropy ParadoxEntropy Paradox: If D ≡ 0 and Γ �= 0, then S increases indefinitely

(incompatible with assumption of steady state). So for a steady state to

exist, there must always be dissipation. (Truly collisionless simulations are

suspect.) Then

0 = κΓ − D. (3)
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The steady-state entropy balance is true,
but its interpretations can be confusing.

0 = κΓ − D. (4)

Interpretations:

× 1. D ⇒ κΓ (more dissipation ⇒ more flux).

� 2. κΓ ⇒ D
(flux determines dissipation; no info about actual value of Γ)

See J. A. Krommes and G. Hu, The role of dissipation in

simulations of homogeneous plasma turbulence, and

resolution of the entropy paradox, Phys. Plasmas 1, 3211

(1994).

It’s all about energy transfer:

Saturation ⇒ transfer (in �k space) ⇒ dissipation.

– 6 –



Simple statistical models can be instructive.

Generic primitive amplitude equation:

∂tψ − Lψ︸︷︷︸
linear

physics

+ �V · �∇ψ︸ ︷︷ ︸
nonlinear
advection

= 0. (5)

The mean field evolves according to

∂t〈ψ〉 − L〈ψ〉 + ∂x 〈δVxδψ〉︸ ︷︷ ︸
Γ(κ)

= 0. (6)

Turbulent fluctuations obey

∂tδψ − Lδψ + δ�V · �∇〈ψ〉︸ ︷︷ ︸
−δf (κ)

+ �∇ · (δ�V δψ) − ∂xΓ︸ ︷︷ ︸
Σ(nl)δψ − δf (nl)

= 0, (7)

or

∂tδψ − Lδψ + ( Σ(nl)︸ ︷︷ ︸
“k2

⊥D(nl)”

+ Σ(s)︸︷︷︸
“k2

⊥D(s)”

)

︸ ︷︷ ︸
coherent

dissipation

δψ = δf (nl) + δf (κ) + δf (s)︸ ︷︷ ︸
incoherent

(internal) forcing

. (8)
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The fluctuation-induced transport coefficients
can come from either comparable scales or shorter ones.

• D(nl): DW�p + DW�q = DW�k (large-scale turbulent diffusion)

• D(s): short-scale noise ⇒ large-scale diffusion.

Just like classical transport theory:

sub-Debye-scale fluctuations ⇒ Braginskii transport coefficients.

– 8 –



Turbulent steady states are described by the
spectral balance equationspectral balance equation.

∂tδψ − Lδψ + (Σ(nl) + Σ(s))δψ = δf (nl) + δf (κ) + δf (s).

(9)

Now introduce

C(t, t′) — two-time correlation function 〈δψ(t)δψ(t′)〉 (10a)

R(t; t′) — two-time (renormalized) response function (10b)

and also the noise covariances F (t, t′) .= 〈δf(t)δf(t′)〉. Then, in steady

state, one has the spectral balance equation

C(ω) = R(ω)︸ ︷︷ ︸
diss.

[F (nl)(ω) + F (κ)(ω) + F (s)(ω)︸ ︷︷ ︸
positive-definite forcing

]R∗(ω)︸ ︷︷ ︸
diss.

.
(11)

More noise ⇒ more fluctuations (and flux)? . . . No, not necessarily. (Need

to know how R scales with fluctuation level.)
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The spectral balance equation can be paradoxical.

Model F (κ)(τ ) ≈ 2κΓ(κ)δ(τ ) and F (s)(τ ) ≈ 2κΓ(s)δ(τ ). Assume

C(τ ) = [R(τ ) +R(−τ )]I, (12a)

F (nl)(τ ) = [Σ(nl)(τ ) + Σ(nl)(−τ )]I (12b)

(the last form is necessary for energy conservation). Then

[R(ω) +R∗(ω)]I︸ ︷︷ ︸
C(ω)

= {[Σ(nl)(ω) + Σ(nl)∗(ω)]I︸ ︷︷ ︸
F (nl)(ω)

+2κ(Γ(κ) + Γ(s))}|R|2(ω).

(13)

Since

R(ω) =
1

−i{ω − iL+ i[Σ(nl)(ω) + Σ(s)(ω)]} , (14)

one has

R+R∗ =
2 Re(−L+ Σ(nl) + Σ(s))

|ω − iL+ iΣ(nl) + iΣ(s)|2 = 2 Re(−L+ Σ(nl) + Σ(s))|R|2.
(15)
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The two-time spectral balance
leads to the one-time entropy balance.

Equation (13) then becomes

[−2 ReL+2 Re( ���Σ(nl)+Σ(s))]|R|2I = 2 Re ���Σ(nl)|R|2I+2κ(Γ(κ)+Γ(s))|R|2.
(16)

Hence

Re(−L+ Σ(s))I︸ ︷︷ ︸
dissipation D

= κ(Γ(κ) + Γ(s))︸ ︷︷ ︸
κΓ

. (17)

The two-time spectral balance
is compatible with macroscopic entropy balance, but

it does not determine the turbulent flux.
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To actually determine the fluctuation level I
or the turbulent flux Γ(κ), one must look at
the equal-time spectral balance equation.

∂I

∂t
− 2γI + 2 Re(Σ(nl) + Σ(s))I = 2(F (nl) + F (s)) (18)

or

∂I

∂t
= 2γI + 2 (F (nl) − ReΣ(nl)I)︸ ︷︷ ︸

−αI2

−k2
⊥D

(nl)I

+2( F (s)︸︷︷︸
q > 0

− ReΣ(s)︸ ︷︷ ︸
k2

⊥D
(s)

I). (19)

Kadomtsev:

• γ < 0: I = q/|γ|
• γ > 0: I = γ/α.
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The turbulent diffusion
must be calculated self-consistently.

Let I ∼ V
2
. Then the turbulent diffusion coefficient is

D(nl) = V
2
τac, where τac ∼ 1

k2
⊥D(nl) + k2

⊥D(s)
. (20)

Thus (upon solving the self-consistent equation for D(nl))

D(nl) ≈ V /k⊥−1

2
D(s). (21)

For fixed V ∼ √
I, D(nl) is reduced by the sampling noise.

It’s trickier to calculate the fluctuation level:

k2
⊥D

(nl)[I] = γ − k2
⊥D

(s) + F (s)/I, (22)

or

V /k⊥︸ ︷︷ ︸
∝ √

I

= γ/k2
⊥ −

(
1

2
D(s) − F (s)/Ik2

⊥

)
︸ ︷︷ ︸

sign?

. (23)

Note that F (s) is largely independent of I, so F (s)/I is probably small. If

so, I is reduced by the presence of noise.
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Now we can inquire about the turbulent flux.

Γ(κ) = 〈δVxδψ〉 (24a)

=
∫
d�x′ V(�x, �x′)〈δψ(�x′, t)δψ(�x, t)〉 (24b)

=
∑
�k

V�kC�k (24c)

∝ I. (24d)

• This is the totaltotal I, calculated in the presence of any sampling noise.

• In this simple generic model, if I is reduced, then Γ(κ) is also.

• In multifield models, one must worry about phase relations.

• There’s no getting around a calculation substantially more detailed

than the sketch given here.
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Discussion

ObservationsObservations:

• The calculation of steady-state spectra and fluxes is a difficult problem

in nonequilibrium statistical dynamics.

• Steady-state spectral balances are tricky (with or without sampling noise).

• Entropy balance does not help one determine the size of the turbulent

flux.

• The two-time spectral balance C = RFR∗ does not imply that more

noise means a larger fluctuation level (or larger flux).

• The turbulent diffusion coefficient D(nl) = V
2
τac is nontrivial because

τac = τac[D(nl), D(s)] (so if noise reduces τac, D(nl) will also be reduced).

ConclusionsConclusions (for a very simple, generic model):

• For fixed fluctuation level, D(nl) is reduced by noise.

• Probably D(nl) itself is also reduced by noise.

• That implies that the spectral level will be reduced.

• And then the turbulent flux Γ is also reduced.
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