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Introduction

Question:

[Does noise enhance or reduce diffusion?]

What does noise mean?

(In the context of PIC simulation, noise means extra )
fluctuations due to Monte Carlo sampling error. See
G. Hu and J. A. Krommes, Generalized weighting

scheme for 0f particle-simulation method, Phys.

Glasmas 1, 863 (1994). y

Hu & Krommes showed that one can develop a kinetic theory of sampling

noise quite analogous to the classical plasma kinetic theory of fluctuations
due to particle discreteness. (The details will not be discussed here. . .)
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After more than a decade, there is still confusion
[and lots of (oral) noise].

Issue: Role of sampling noise
in gyrokinetic particle simulation

e Assertions: Extra noise should

1. increase turbulent flux;
2. decrease turbulent flux.

e General arguments:
— Increase — more noise = more dissipation

= more flux (entropy argument)

— Decrease — more noise = more resonance broadening
= wipe out turbulent drive = less flux

There are various paradoxes, so it’s easy to get confused.
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A difficulty is that saturated, turbulent, steady states
are not in thermal equilibrium.

Warnings:

e Cannot (blindly) use fluctuation—dissipation theorem (FDT).

e There is no simple “thermodynamics” of a nonequilibrium steady state.
Possibilities:

e Generalize FDT = steady-state spectral balance [entirely nontrivial,

but foundations are well understood, even in the presence of
discreteness/sampling effects (Rose, 1979)]

e Entropy considerations.

(I will not resolve anything in this talk. My goals are to |
emphasize that one must be careful and that there are

subtleties, but also that a systematic framework does

kexist for discussing these issues. y
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The standard entropy-balance argument is a red herring,
and can be easily misinterpreted.

General form of the evolution equation for “entropy” S (a certain quadratic
functional of the fluctuations):

T kI — D. (1)
Here
x — gradient drive (e.g., L' or L;Y) (2a)
I' — turbulent flux (2b)
D — dissipation (2c)

The Entropy Paradox: If D = 0 and I"' # 0, then S increases indefinitely
(incompatible with assumption of steady state). So for a steady state to
exist, there must always be dissipation. (Truly collisionless simulations are

suspect.) Then

|0 =«T —D.] (3)

=PPPL



The steady-state entropy balance is true,
but its interpretations can be confusing.

[0 — kT — D.] (4)

Interpretations:
X 1. D = kI’ (more dissipation = more flux).

v 2. k' = D
(flux determines dissipation; no info about actual value of T")

It’s all about energy transfer:
Saturation =- transfer (in k space) = dissipation.
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Simple statistical models can be instructive.

Generic primitive amplitude equation:

o) — Ly + V-V =0.
~ =
linear nonlinear

physics advection
The mean field evolves according to

Bu(p) — L) + Do (6Vadp)) = 0.
(%)

Turbulent fluctuations obey

809 — Loy + 6V - V(i) + V - (6Vép) — 8,T = 0,

e D g _ gD
or

(5)

(6)

(7)

00 — Loy + ( T 4+ 29 ) oy =of ") +of +5f0. (8)

“k2 DED” k2 D" incoherent
b ~~ g (internal) forcing
coherent
dissipation
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The fluctuation-induced transport coefficients
can come from either comparable scales or shorter ones.

e D(®);: DW; + DW; = DW;. (large-scale turbulent diffusion)

e D®): short-scale noise = large-scale diffusion.

Just like classical transport theory:

sub-Debye-scale fluctuations => Braginskii transport coefficients.
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Turbulent steady states are described by the
spectral balance equation.

[at(sw — Loy + (™ + &)y = o + o7 + 5f(s)-]

(9)

Now introduce
C(t,t") — two-time correlation function (§(t)dv(t')) (10a)
R(t;t") — two-time (renormalized) response function (10b)

and also the noise covariances F'(t,t’) = (3f(t)df(t")). Then, in steady
state, one has the spectral balance equation

C(w) = R(w)[F™(w) + F®(w) + FO(w)] R*(w) .

diss. positive-definite forcing diss.
\_ J

(11)

More noise = more fluctuations (and flux)? ... No, not necessarily. (Need
to know how R scales with fluctuation level.)
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The spectral balance equation can be paradoxical.

Model F(®) (1) =~ 2kT®)§(7) and F©®) (1) =~ 2kI'®)§(7). Assume
C(r) = [R(7) + R(—7)]L, (12a)
FO (1) = 20D (7) + =D (7)1 (12b)
(the last form is necessary for energy conservation). Then

[R(w) + R* ()] = {[=™) (w) + ZOV*(w)]I +2x(T") + T®)}R|?(w).

C(w) FOD ()
(13)
Since .
R(w) = : 14
@) = e S+ i (@) + 2O ()]} (14)
one has
2Re(—L + XD 4 »(s)

w — iL + iX@D) 4 §36)|2
(15)
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The two-time spectral balance

leads to the one-time entropy balance.

Equation (13) then becomes

[—2Re L+2 Re(SPD £ 20)]|R|?T = 2 Re SV | R|2T+2k (0™ £T®) | R)2.

Hence

(16)

Re(—L + X)) T = g(T'®) 4+ TO)), (17)

dissipation D kI

r

.

is compatible with macroscopic entropy balance, but

The two-time spectral balance A

it does not determine the turbulent flux.

J
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To actually determine the fluctuation level I

or the turbulent flux T'*), one must look at
the equal-time spectral balance equation.

oI
o ~ 21 +2 Re(Z™) 4 261 = 2(F®) 4 F6))

or

ol

i (nl) _ (nl) (s) _ (s)

5t 27I—|—2$F EeE IZ—I—Z(F Re X'’ T).
—al? =

_ g2 peabg k1D

Kadomtsev:

o v <0: I=gq/l|v|
e v>0: I =+/a.
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(19)
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The turbulent diffusion
must be calculated self-consistently.

Let 1 ~ 72. Then the turbulent diffusion coefficient is

_ 1
D™D — VZTaC, where T1,. ~

Thus (upon solving the self-consistent equation for D(nl))
— 1
_D@szq%l—gpﬁk
For fixed V ~ /I, DD js reduced by the sampling noise.

It's trickier to calculate the fluctuation level:

k2D®V[I =~ —-k2D® 4+ FO /T,

or
_ 1
V/k, =~/k% — (—D(S) — F(S)/Ikﬁ_) :
N 2
o< VI Si;l?

k2 D™D 4 k2 D)’

(20)

(21)

(22)

(23)

Note that F(®) is largely independent of I, so F(S)/I is probably small. If

so, I is reduced by the presence of noise.
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Now we can inquire about the turbulent flux.

() = (§V,0%) (24a)
_ / 4 V(E, &) (60(F, )00 (T, t)) (24b)
=Y " ViC; (24c)
x II‘.c (24d)

This is the total I, calculated in the presence of any sampling noise.
In this simple generic model, if I is reduced, then I'(*) is also.
In multifield models, one must worry about phase relations.

There’s no getting around a calculation substantially more detailed
than the sketch given here.
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Discussion

Observations:

The calculation of steady-state spectra and fluxes is a difficult problem
in nonequilibrium statistical dynamics.

Steady-state spectral balances are tricky (with or without sampling noise).

Entropy balance does not help one determine the size of the turbulent
flux.

The two-time spectral balance C = RFR™ does not imply that more
noise means a larger fluctuation level (or larger flux).

The turbulent diffusion coefficient D) =V
Tac = Tac[D®D, D®)] (so if noise reduces T,., D™D will also be reduced).

2 . . .
Tac 1S nontrivial because

Conclusions (for a very simple, generic model):

For fixed fluctuation level, D™V is reduced by noise.
Probably DD jtself is also reduced by noise.
That implies that the spectral level will be reduced.

And then the turbulent flux T’ i_s1a5ls_o reduced. ~PPPL
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