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The relevance of the gyrokinetic fluctuation-dissipation theorem �FDT� to thermal equilibrium and
nonequilibrium states of the gyrokinetic plasma is explored, with particular focus being given to the
contribution of weakly damped normal modes to the fluctuation spectrum. It is found that the
fluctuation energy carried in the normal modes exhibits the proper scaling with particle count �as
predicted by the FDT in thermal equilibrium� even in the presence of drift waves, which grow
linearly and attain a nonlinearly saturated steady state. This favorable scaling is preserved, and the
saturation amplitude of the drift wave unaffected, for parameter regimes in which the normal modes
become strongly damped and introduce a broad spectrum of discreteness-induced background noise
in frequency space. © 2007 American Institute of Physics. �DOI: 10.1063/1.2710808�

I. INTRODUCTION

The gyrokinetic model of a plasma, in addition to its
original success1,2 in analytically describing low-frequency
phenomena �relative to the ion gyrofrequency� of moderate
wavelength �k��i�1, where �i is the ion gyroradius�, has
also been shown to be extremely well-suited for use in large-
scale numerical simulations.3,4 Recent particle-in-cell �PIC�
simulations,5 for instance, can use upwards of 30 billion par-
ticles on massively parallel machines, and are able to model
the behavior of toroidal fusion plasmas at multiple-teraflop
speeds. On more modest scales, gyrokinetic PIC simulations
have been used to investigate turbulence spreading in shaped
plasmas,6 collisionless and collisional tearing modes,7 and
the effects of nonadiabatic electrons8 on turbulent simula-
tions. They have also been employed to study collisional
damping of zonal flows,9 ion temperature gradient-driven
turbulence in toroidal geometry,10 and the size scaling of
transport parameters in turbulent plasmas.11

Recent discussion in the fusion simulation community
has centered on the topic of “discrete particle noise” and the
effects that such noise may have on the long-time transport
predictions of turbulent gyrokinetic PIC simulations.12,13

Physical effects �such as collisions� are indeed associated
with the discrete nature of the particles in a plasma. The
discrete particle noise under discussion here, however, oc-
curs even in collisionless simulations; because PIC simula-
tions represent moments of the plasma distribution function
by appropriately Monte-Carlo sampling a collection of
marker particles evolving in the phase space, sampling noise
associated with this representation is always present �and is
reduced in amplitude as more markers are used in the
sampling�.14,15 In thermal equilibrium, where statistical fluc-
tuations are linearly Landau damped, the fluctuation-
dissipation theorem �FDT� quantifies this phenomenon, pro-
viding a simple relation between the fluctuation spectrum of
the plasma and the number of sampling markers. Fundamen-
tally, however, one is interested in nonequilibrium situations;
we wish to determine to what degree this behavior �i.e., the
straightforward reduction of statistical �or “discrete particle”�
noise as the number of markers is increased� holds true as the

plasma is driven from thermal equilibrium. Consequently, in
this work we focus on the self-consistent response of the
plasma distribution function to both the statistical noise and
the physical parameters of the problem �e.g., density gradi-
ents�, examining the behavior of drift waves in a plasma slab
�where the equilibrium state is straightforward� and utilizing
simulation techniques based on finite-size marker particles16

�eliminating the need to calculate the N2 interparticle forces,
through the modification of particle interactions inside a De-
bye sphere�, the gyrokinetic PIC model3 �removing the space
charge waves and simplifying the gyromotion�, and the �f
method17 �wherein only the deviation of the plasma from a
known equilibrium is modeled via Monte-Carlo sampling�.

As we previously alluded, the nature of discreteness-
induced noise in the plasma is related to the behavior of the
fluctuation spectrum �������k ,��. Consequently, we ex-
plore the behavior of the fluctuation spectrum as low-
frequency drift waves drive the plasma from thermal equilib-
rium to a nonlinearly saturated steady state, examining the
behavior of the spectrum as a function of particle count and
giving particular attention to the contribution of the weakly
damped normal modes of the plasma to this spectrum. These
normal modes carry the bulk of the particle discreteness-
induced noise in electrostatic gyrokinetic plasmas;4,18,19 we
explore the validity of this statement as parameters of the
system change so that the normal modes are no longer well-
defined �i.e., as the damping rate of the normal modes be-
comes large�. Additionally, we present results �relevant to the
general issue of the relationship between noise and signal in
a PIC simulation treated in existing literature; see Refs. 16,
20, and 21� demonstrating that the effects of discreteness-
induced noise on the long-time behavior of nonlinearly satu-
rated drift waves can be minimized for reasonable simulation
parameters under certain conditions.

Section II of this paper introduces the equations of the
gyrokinetic model, and presents the gyrokinetic fluctuation-
dissipation theorem �FDT�. In Sec. III, we describe the nor-
mal modes of the gyrokinetic plasma, and explore the con-
ditions under which they are well-defined. We demonstrate
that our thermal equilibrium simulations are consistent with
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gyrokinetic theory and that these simulations satisfy the gy-
rokinetic FDT. Section IV explains how the simulation meth-
ods used are generalized to include the possibility of a den-
sity gradient �leading to linear drift waves�; a calculation
describing the nonlinear saturation of these waves �expand-
ing upon the work of Ref. 22� is also given. Section V de-
scribes the relevance of the gyrokinetic FDT to the nonequi-
librium, nonlinearly saturated states of the gyrokinetic
plasma, and presents simulation results showing the relation-
ship of these states and the particle-discreteness-induced
background noise in the presence and absence of well-
defined normal modes. We then conclude with some com-
ments on the applicability of this work to the more general
issue of the effect of noise in PIC simulations.

II. THE GYROKINETIC MODEL

A. Governing equations

In the limit of k�
2 �i

2�1, the gyrokinetic Vlasov equa-
tion, which describes the phase space evolution of a gyro-
center distribution function F��x ,v� , t�, can be written �in the
absence of magnetic field gradients, and in the electrostatic
limit� as

�F�

�t
+ v�b · �F� − �� � b · �F� −

q�mi

qim�

b · ��
�F�

�v�

= 0.

�1�

This equation, which resembles the drift kinetic equation,
uses the conventional gyrokinetic normalization; lengths and
times are normalized to the scaled gyroradius �s

	
Te /mi /�i and the inverse ion cyclotron frequency �i
−1

= �qiB0 /mi�−1, while the electrostatic potential � is normal-
ized to the electron temperature Te / �qe�. Here b is a unit
vector in the direction of the �uniform� magnetic field B
=B0b, and v� is a velocity coordinate parallel to this field.
The charge, mass, and temperature of species � are repre-
sented by q�, m�, and T�, respectively, and we assume that
the ions are singly charged �qi= �qe � �.

The gyrokinetic Poisson equation, in these normalized
units, is given by

�2���De
2

�s
2  + ��

2 � = − �
�

q�

qi
�

−	

	

F�dv� �2�

with the first term on the left arising from the conventional
Laplacian operator in Poisson’s equation and the second term
arising from the polarization charge.3 Because the electron
Debye length �De= �
0Te /n0qe

2�1/2 is much smaller than �s,
the first of these terms may be neglected. The dominance of
the polarization term in Eq. �2� effectively changes the fun-
damental length scale of the gyrokinetic plasma from �De to
�s; we will later see this effect in examining the low-
frequency limit of the gyrokinetic dielectric function.

For our slab model, we postulate a magnetic field in the
b=�ŷ+ ẑ direction �for some ��1�. We ignore variation in
the ẑ direction, and study the evolution of waves �perpen-
dicular to the dominant field component� with discrete wave
numbers k	kxlx̂+kymŷ, for integer l and m, with kx

	2� /Lx and ky 	2� /Ly. Here Lx and Ly are the dimensions

of the slab �using periodic boundary conditions� in the x̂ and
ŷ directions. We can then define a fundamental parallel wave
number k� 	�ky and the perpendicular wave number

k��l ,m�=
k2−m2k�
2.

These equations are solved by the standard PIC methods,
initially loading a set of particles with some reasonable ini-
tial conditions �in our case, a Maxwellian distribution in v�

and a uniform distribution in x�. We then iteratively evolve
the positions of these particles according to the characteris-
tics of the gyrokinetic Vlasov equation, interpolate their po-
sitions to a spatial grid, and calculate the electrostatic poten-
tial using Fourier transforms.

B. The fluctuation-dissipation theorem

In thermal equilibrium, where no spatial gradients are
present, the linear dielectric function relevant to the physical
system of Eqs. �1� and �2� can be written as

Dl,m��� = 1 +
Xi + Xe

k�
2 �l,m�

. �3�

Here, X�	1+�Z���, where �=� /
2mk�vt� and Z is the
plasma dispersion function. The thermal velocity is given
�because of the gyrokinetic normalization� by vt�

=
miT� /m�Te, and the dispersion relation can be obtained
from the zeros of Dl,m���. In the limit as �→0, the dielectric
function �apart from a change of characteristic scale length
�De→�s� describes the familiar Debye shielding effect of
kinetic theory.

The resemblance of Eqs. �1� and �2� to the conventional
Vlasov-Poisson system suggests that many parallels can be
drawn between gyrokinetic and conventional Vlasov theory,
and Krommes et al.19 have initially treated this topic �see
also Ref. 23 for a lengthier discussion�, formulating the clas-
sical fluctuation-dissipation theorem �FDT� for a gyrokinetic
plasma in the electrostatic approximation. In the weakly
coupled limit appropriate for collisionless plasma, the FDT
describes the relationship between the plasma’s fluctuation
spectrum in thermal equilibrium and its linear �dissipative�
response to an infinitesimal perturbation away from that
equilibrium. One can formulate the latter quantity in terms of
the plasma’s linear dielectric function; according to the theo-
rem, the thermal equilibrium fluctuation spectrum of our slab
model satisfies

������l,m��� =
2

N�k�
2 �l,m�

Im�1 −
1

Dl,m��� . �4�

Integration of this formula over all frequencies using residue
theory, and normalizing to 2�, yields the fluctuation spec-
trum as a function of wave number only,

������l,m =
1

T
�

0

T

���l,m�t��2�dt

=
1

Nk�
2 �l,m��1 + k�

2 �l,m�/2�
, �5�

where T is the time over which the simulation runs �the left
hand side being the time-averaged ��l,m�t��2� and N is the
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number of particles of a given species. The latter relationship
is quite useful as a diagnostic of numerical simulations in
thermal equilibrium �see Fig. 3 for an example� due to its
ease of implementation.

III. NORMAL MODES

A. Theory

In certain cases,24 the dominant contributions to the fluc-
tuation spectrum of Eq. �4� come from only a few localized
peaks at various values of � in the spectrum. If we consider
the case of normal modes �oscillations that damp on a time
scale slow compared to the period of the wave�, we can
separate the real and imaginary parts of the dielectric func-
tion, Dl,m���=Dl,m� ���+ iDl,m� ���, and obtain

Im�1 −
1

Dl,m��� = � Dl,m� ���

Dl,m� ���2 + Dl,m� ���2� . �6�

In the limit of small Dl,m� ���, which we expect from a
normal mode, this Lorentzian form has the approximate form

Im�1 −
1

Dl,m��� � ��„Dl,m� ���…

= ��
p=1

p0 ��� − �p�
��Dl,m� ���/����=�p

, �7�

where we have assumed that there are p0 normal modes �i.e.,
solutions of Dl,m� ��p�=0 for which the denominator is
nonsingular�. Consequently, the approximate relation

������l,m��� =
2�

Nk�
2 �l,m� �p=1

p0 ��� − �p�
���Dl,m� ���/����=�p

�8�

holds, implying that the bulk of the fluctuation energy for a
given wave number �as a function of �� resides in localized
peaks about the real frequencies of the normal modes, as-
suming such modes are reasonably well-defined.

The plasma described by the linear dielectric of Eq. �3�
has two normal modes that are analogous �with appropriate
changes of scaling� to the well-known Langmuir waves of
conventional Vlasov theory in the long-wavelength limit;
these modes are conventionally referred to as �H modes.4 If
we assume the ion and electron thermal velocities are small
relative to the resonant phase velocity � /k�, we can expand
Z��� to obtain

Dl,m� ��� � 1 −
�H

2

�2 ; �H
2 =

m2k�
2�vte

2 + vti
2�

k�
2 �l,m�

;

�9�
�r = ± ��H� .

This gives the approximate result

�������l,m����large � �
2�

Nk�
2 �l,m�

���� − �H�
2

+
��� + �H�

2
� �10�

for the fluctuation spectrum at high frequencies. However,

the existence of these normal modes depends on the system
size Ly through the parallel wave number k�; as the system
size decreases, the resonant phase velocity moves from the
tail of the initial Maxwellian distribution into the bulk of the
distribution, the damping rate increases �as is the case for
Langmuir waves, where the damping rate is proportional to
the slope of the background distribution at the resonant ve-
locity�, and it is no longer meaningful to speak of the distur-
bance as a wave �it damps away on a time scale similar to the
period of the real oscillation frequency�. Additionally, the
approximation of the Lorentzian of Eq. �6� as a delta func-
tion begins to fail; the distinct real frequency of a mode with
long parallel wavelength is replaced by a band of frequencies
near �p. Thus, for larger parallel wave numbers, the energy
in the fluctuation spectrum cannot be said to reside in “nor-
mal modes;” rather, it resides in random fluctuations excited
by the discrete nature of the particles in the plasma.

Ion acoustic modes may also be normal modes of Eq.
�3�; in the limit e�1,i�1; letting e�0 and expanding
Z�i� to lowest nontrivial order yields

Dl,m� ��� �
�1 − k�

2 �l,m��
k�

2 �l,m�
�1 −

�IA
2

�2 ;

�11�

�IA
2 =

m2k�
2vti

2

�1 + k�
2 �l,m��

; �r = ± ��IA�

for intermediate values of � �k�vti���k�vte�. Although
drift waves arise from the destabilization of ion acoustic
modes by density gradients, in the thermal equilibrium case
these modes are strongly Landau damped; their effects on the
fluctuation spectrum are relatively unimportant if the �H

modes are well-defined. The delta-function approximation
�integrating only over intermediate values of �� is consistent
with this result; we obtain

�������l,m����int. � �
2�

N

1

�1 + k�
2 �l,m��

���� − �IA�
2

+
��� + �IA�

2
� . �12�

Since k�
2 �1, the coefficient multiplying the delta functions

is significantly smaller for these modes than the correspond-
ing coefficient in Eq. �10�.

It is known from Eq. �5� that integrating the exact fluc-
tuation spectrum over all frequencies �normalized to 2��
yields the result

������l,m exact =
1

Nk�
2 �l,m��1 + k�

2 �l,m�/2�

=
1

Nk�
2 �l,m�

−
1

N�2 + k�
2 �l,m��

�13�

which ought to be well-matched by the sum of the � inte-
grals over the approximate spectra we have derived in Eqs.
�10� and �12�. Performing these integrals and normalizing to
2�, we find that our procedure slightly overestimates the
correct answer; we obtain
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������l,m approx. =
1

Nk�
2 �l,m�

+
1

N�1 + k�
2 �l,m��

�14�

with the two terms arising from the �H modes and the ion
acoustic modes, respectively. However, it is clear that the
delta-function approximation is reasonable; the error is on
the order of the relative contribution of the ion acoustic
modes, which is small.

B. Numerical simulations

With our knowledge of the thermal equilibrium fluctua-
tion spectra, we now verify that our code satisfies the
fluctuation-dissipation theorem. We evolve particles along
the characteristics of the gyrokinetic Vlasov equation, Eq.
�1�, obtaining

dx�j

dt
= − � ��

�y
�

x=x�j

;
dy�j

dt
= v��j� + � ��

�x
�

x=x�j

,

dv��j

dt
= −

q�mi

qim�

�� ��

�y
�

x=x�j

. �15�

We also utilize the standard �f technique of setting F�

=F0�+�f� in Eq. �1�; perturbations around the background
Maxwellian F0� are examined by defining the particle weight
w�	�f� /F� and evolving the resulting weight equation

dw�j

dt
= − �1 − w�j�v��j�

q�

qi
� ��

�y
�

x=x�j

�16�

along with Eqs. �15�. The appropriately weighted density
perturbations are then interpolated to a grid and the potential
found via Fourier transforms.

Numerically, one can also directly solve Eq. �3� and ob-
tain a representation of Eq. �4� as a function of � for a given
�l ,m�. Normalizing this representation to 2�������l,m �from
Eq. �5��, we can then qualitatively compare the results with
the predictions of Eqs. �10� and �12� and our simulations. As
expected, we observe in Figs. 1 and 2 that the power does
indeed reside in localized peaks that spread as the parallel
wave number grows, and that the ion acoustic modes are
relatively unimportant for small parallel wave numbers. Here
we have used Lx=32, �=0.01, �l ,m�= �1,1�, and vte

2

=mi /me�1837.0 as Ly assumes the values �30,23,16�,
yielding k��i= �0.08,0.11,0.19�, respectively. The simula-
tions use 128 grid points in both the x and y directions, along
with N=250 000 particles and a time step �t=0.1. One notes
that the positions of the peaks in � are not well matched by
our delta-function approximation; however, this can be rec-
tified by retaining more terms in the expansion of the plasma
dispersion functions �the algebra is unduly complicated and
will not be included here�. As previously mentioned, one can
also see the degradation of the delta-function approximation
of Eq. �7� �as well as the increasing contribution of the ion
acoustic modes to the spectrum� as the parallel wave number
is increased.

As noted by Hu and Krommes,14 the use of the �f
method requires us to normalize the potential fluctuations by
a typical weight w̄. For the �H modes, which �as the dispar-

ate velocities of Eq. �9� suggest� are predominantly sup-
ported by the electrons, the natural choice for w̄ in this case
is the root-mean-square electron weight 
� j=1

N wej�t�2 /N. We
exhibit the simulation results, along with the theoretical
curve obtained from Eq. �5� at lowest order, in Fig. 3. The
simulation uses 128 grid points in the x and y directions,
with Lx=Ly =23 and time step �t=0.125. The parallel field
component is given by �=0.01, and we have Te=Ti=1 and
mi /me=1837.0. The agreement is quite good as one passes
into the regime �relevant to meaningful Monte-Carlo sam-
pling of the phase space� where an average of several marker
particles of each species inhabit a grid cell; an average of one

FIG. 1. The normalized fluctuation spectrum ������l,m��� / �2�������l,m�
for �l ,m�= �1,1� from the numerical solution of Eq. �4� �solid lines� and our
simulation results �dotted lines� is plotted together with the delta-function
approximation of Eq. �10� for the �H modes �dashed lines� as the parallel
component of the wavelength is varied.

FIG. 2. The simulation results and theoretical predictions of Fig. 1, together
with the delta-function approximation of Eq. �12� for the ion acoustic modes
�dashed lines�, are plotted over a narrower frequency range as the parallel
component of the wavelength is varied.
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marker particle per species per grid cell occurs at the left-
most data point in the figure, where N�1.6�104.

IV. DRIFT MODES

A. Linear growth

We now relax the constraint of thermal equilibrium by
introducing a background density gradient that gives rise to
drift waves. It is common17,25,26 to impose a fixed back-
ground density gradient by modeling the particle density as
an x-dependent function of a parameter �N, such that

�F0� = − �NF0� �17�

and neglecting this x -dependence where the gradient does
not act specifically on F0�. Generally, we must have ��N �
�kx for this procedure to be strictly valid �though this re-
striction is unnecessary for modes propagating perpendicular
to the density gradient�. With this assumption, the gyroki-
netic Vlasov and Poisson equations �assuming equal tem-
peratures for ions and electrons� can be written in the �f
formalism as

��f�

�t
+ v��

��f�

�y
+ �N

��

�y
F0� + v��

q�

qi

��

�y
F0� − ��

� ẑ · ��f� −
q�mi

qim�

�
��

�y

��f�

�v�

= 0, �18�

��
2 � = − �

�

q�

qi
�

−	

	

�f�dv� . �19�

We now make a standard assumption of quasilinear
theory,27 namely that �for real �l,m,�

��x,y,t� = 
 �
l=−	

	

�
m=−	

	

�̂l,m�
t�eikxlxeikymye−i�l,mt, �20�

�f��x,y,v�,t� = 
 �
l=−	

	

�
m=−	

	

� f̂�,l,m�v�,
t�eikxlxeikymye−i�l,mt,

�21�

where the quantities �̂l,m�
t� and � f̂�,l,m�v� ,
t� vary slowly in
time relative to the period T=2� /�l,m, and the quantity 

=1 is an ordering parameter denoting this slow variation.
Defining �N

* 	ky�N, we then obtain

�

�t
� f̂�,l,m�v�,
t� − i��l,m − mk�v��� f̂�,l,m�v�,
t�

+ im�̂l,m�
t�F0��v����N
* +

q�

qi
k�v�

+ 
 �
l�=−	

	

�
m�=−	

	

ei��l,m−�l�,m�−�l−l�,m−m��t�kxky�m�l − l�m�

− im�k�

q�mi

qim�

�

�v�
��̂l�,m��
t�� f̂�,l−l�,m−m��v�,
t� = 0, �22�

k�
2 �l,m��̂l,m�
t� = �

�

q�

qi
�

−	

	

� f̂�,l,m�v�,
t�dv� . �23�

Ignoring the nonlinear �̂l�,m��
t�� f̂�,l−l�,m−m��v� ,
t� terms
allows us to solve the Vlasov equation,

� f̂�,l,m�v�,
t� = � f̂�,l,m�v�,0�ei��l,m−mk�v��t

− imF0��v����N
* +

q�

qi
k�v�

��
0

t

�̂l,m�
�t − ���ei��l,m−mk�v���d� . �24�

If we then let �̂l,m�
�t−���� �̂l,m�
t�e−
��l,m �an assump-
tion appropriate both for the Landau-damped normal modes

FIG. 3. Simulation results and theory exhibiting the
scaling of the �-integrated fluctuation spectrum with
the number of simulation particles. The theoretical
curve is obtained from Eq. �5� in the k�

2 �l ,m��1 limit,
with the potential normalized to the root-mean-square
electron weight.
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and the drift modes, where �l,m is the damping/growth rate
which we assume occurs on the slow time scale�, we obtain
�after some algebra� the linear expression

� f̂�,l,m�v�,
t� =

mF0��v����N
* +

q�

qi
k�v��̂l,m�
t�

�l,m − mk�v� + i
�l,m
. �25�

Here, it is notable that the modes for which m=0 �zonal
flows� are strictly nonlinearly generated. For all other modes,
we can use Eq. �25� to find the linear dispersion relation

0 = k�
2 �l,m� − �

�

�1 +
mq�

qi

�N
*

�l,m + i
�l,m


��
−	

	 mk�v�F0��v��
�l,m − mk�v� + i
�l,m

dv� . �26�

From the latter equation we can recover the drift wave
by assuming that the resonant phase velocity is much larger
than the ion thermal speed �so that ion terms may be ne-
glected altogether� and much less than the electron thermal
speed; expansion in powers of 
 then yields

0 = k�
2 �l,m� + 1 −

m�N
*

�l,m
+

m�N
* i
�l,m

�l,m
2

+
i
���l,m − m�N

* ��

2mk�vte

�27�

with �=sign��l,m /m� and solution

�l,m =
m�N

*

1 + k�
2 �l,m�

; 
�l,m =

��N

*2k�
2 �l,m�m�

�1 + k�
2 �l,m��3
2k�vte

.

�28�

One observes that �l,m=−�l,−m=−�−l,−m and that the
drift modes grow �or damp� independently of the sign of l or
m. Consequently, Eq. �25� can be used to show that
�̂l,−m

* �
t�= �̂l,m�
t�.

B. Nonlinear saturation

Because of the nonlinear terms in Eq. �22�, the drift
waves described by Eq. �26� that grow in time will eventu-
ally saturate. We can examine this saturation mechanism in a
simple case by restricting the potential to modes of one par-
ticular wave number �l= ±1,m= ±1� and ignoring the paral-
lel velocity nonlinearity �the velocity derivatives in Eq.
�22��. Our approach is very similar to the mode coupling
calculation of Lee et al.,22 though the latter work does not
clearly distinguish the separate time scales in the problem
�and thus yields the scaling of the saturation level only up to
a numerical coefficient�; a similar derivation valid in the one-
dimensional case has been carried out by Parker and Lee.17

The equation for �l=2,m=0� is given by

�

�t
�f�,2,0�v�,
t� − i�2,0�f�,2,0�v�,
t�

+ 2
kxkye
i�2,0t��̂1,1�
t�� f̂�,1,−1�v�,
t�

− �̂1,−1�
t�� f̂�,1,1�v�,
t�� = 0, �29�

which forces �2,0=0. Substitution of the linear values for

� f̂�,1,±1�v� ,
t� then yields the nonlinear result

� f̂�,2,0�v�,
t� = −
2i
kxkyF0��v���̂1,1�
t��̂1,−1�
t�

��1,1 − k�v��2 + 
2�1,1
2

���N
* +

q�

qi
k�v� . �30�

A similar procedure for l=0,m=2 yields no contribu-
tion, so we can then write the nonlinear equation for �l
=1,m=1�;

�

�t
� f̂�,1,1�v�,
t� − i��1,1 − k�v��� f̂�,1,1�v�,
t�

+ i�̂1,1�
t�F0��v����N
* +

q�

qi
k�v�

+ 2
kxky�̂1,−1
* �
t�� f̂�,2,0�v�,
t� = 0 �31�

with approximate solution

� f̂�,1,1
NL =

F0��v����N
* +

q�

qi
k�v��̂1,1�
t�

�1,1 − k�v� + i
�1,1

· �1 −
4
2kx

2ky
2��̂1,−1�
t��2

��1,1 − k�v� − i
�1,1���1,1 − k�v� + 3i
�1,1�
� .

�32�

When this result is inserted into the Poisson equation
and the drift-wave dispersion relation calculated, we obtain

0 = k�
2 �1,1� + 1 −

�N
*

�1,1
NL

+ i
�N

* 


�1,1
2 ��1,1

NL − �1,1�1 −
kx

2ky
2��̂1,−1�
t��2e−�2

�1,1
2 � , �33�

where �	�1,1 /
2k�vte. The real part of the frequency is un-
changed, but saturation occurs when the potential grows such
that the imaginary term is zero;

��̂1,±1�
t�� �
�1,1e�2/2

kxky
�34�

�note that �̂1,1= �̂1,−1
* �, which predicts a saturation level

higher by a factor of 2e�2/2�2 than the calculation of Ref.
22. Comparing this result with our simulations, we find that
this procedure gives a quite reasonable estimate for the satu-
ration level, as Fig. 4 shows. The difference between our
calculation and the calculation of Ref. 22 lies in the treat-
ment of the separate time scales corresponding to mode os-
cillation and mode growth; if these time scales are reason-
ably well separated, a more careful treatment of the
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numerical coefficient multiplying the � /kxky scaling �pre-
dicted by the earlier calculation� can be obtained. In any
case, one can plausibly argue �both analytically and from the
data� that nonlinear effects do indeed cause the mode to satu-
rate, and it is the existence of such a saturation mechanism
�rather than the detailed description of it� that we will prima-
rily make use of in the remainder of this paper.

V. SATURATED STATES AND THE FDT

If we include a density gradient in the background dis-
tribution, the dielectric function in Eq. �3� generalizes to

Dl,m��� = 1 +
Xi

k�
2 �l,m�

�1 +
m�N

*

�


+
Xe

k�
2 �l,m�

�1 −
m�N

*

�
 . �35�

The introduction of a density gradient as a free-energy
source necessarily implies that the system is no longer in
thermal equilibrium, so one cannot apply the fluctuation-
dissipation theorem directly without careful consideration. It
is plausible, however, that the theorem can be applied to a
nonlinearly saturated system containing only damped and
marginally stable modes when the deviation from thermal
equilibrium is small �note that this would not include sys-
tems wherein nonlinear phenomena, such as Compton scat-
tering, transfer fluctuation energy from waves that continu-
ally grow�. For the nonlinearly saturated drift waves we have
simulated, we know from Eq. �28� that the real frequency of
the drift wave, which scales as �N

* and arises from the inter-
action of the density gradient and the low-frequency ion
acoustic wave, is well separated from the high-frequency
components of the fluctuation spectrum. Even when the
background gradient is large enough to amplify these low-
frequency fluctuations and produce unstable drift waves, our

simple model for the saturation mechanism predicts a negli-
gible shift in the real frequency of the mode. Low-frequency
fluctuations are amplified by the density gradient, grow, and
nonlinearly saturate, but their energy remains in the low-
frequency portion of the spectrum �as demonstrated in the
previous section�, well separated from and having negligible
effects on the high-frequency modes where the bulk of the
discreteness-induced noise resides. Consequently, it remains
feasible to use the FDT to predict the behavior of the high-
frequency portion of the spectrum.

As before, we can find the �H modes by taking the limit
of the dielectric function as e ,i�1, obtaining

Dl,m��� � 1 −
�H

2

�2 +
m�N

* �H
2

�3 ; �H
2 �

k�
2m2vte

2

k�
2 �l,m�

. �36�

Because we assume �N
* is small, its effect on the �H

modes is slight; to lowest order, we can neglect it and re-
cover the result of Eq. �10�. Integrating the latter result only
over the high frequencies, we see that the fluctuation energy
in the normal modes should continue to scale inversely as the
number of particles �as in Eq. �14��.

If we attempt to apply Eq. �8� to the portion of the spec-
trum containing the drift wave, the dispersion relation �as-
suming a nonlinear saturation of the general form described
previously� is given by

Dl,m��� �
1 + k�

2 �l,m�
k�

2 �l,m�
�1 −

�l,m

�
+ i

�l,m�s

�2  , �37�

where �s goes to zero as the system saturates nonlinearly and
�l,m is given by Eq. �28�. In this case, Eq. �8� suggests that
for the drift waves,

�������l,m����small � =
2�

N�1 + k�
2 �l,m��

��� − �l,m� . �38�

Because drift waves arise from the destabilization of ion
acoustic waves by a density gradient, the resemblance of this
equation to Eq. �12� is not surprising. Although additional
physical effects �the linear growth and saturation of the drift
modes� have arisen that the thermal equilibrium FDT �and
thus, the latter equation� does not capture, our simulation
results �later in this section� suggest that the prediction of Eq.
�12� regarding the scaling of the low-frequency discrete par-
ticle noise with N has relevance in the presence of the drift
wave as well, as the noise does not appear to be amplified by
the linear mode growth. A simple estimate of the low-
frequency discreteness-induced fluctuation level �the square
root of the frequency integral of Eq. �38�� yields a much
smaller amplitude �on the order of 3% for typical simulation
parameters used in this section� than the quasilinear satura-
tion level of Eq. �34�. The attainment of a nonlinearly satu-
rated steady state by the drift wave suggests that it may be of
interest to determine whether more general equations �akin
to Eqs. �10� and �38�� can be constructed to describe low-
frequency discreteness-induced fluctuations about this steady
state. A brief discussion on the possibility of developing an
FDT for nonthermal equilibria is presented in Ref. 28; the
effects of discreteness-induced noise in such plasmas are also
addressed heuristically by Kadomtsev.29 Although we do not

FIG. 4. �Color online� The nonlinearly saturated �1,−1�t� mode amplitude
and the quasilinear prediction of Eq. �34� for the saturation level, together
with the expected growth rate from linear theory �only the slope of the line
is meaningful�. The simulation uses the same parameters as Fig. 3.
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pursue it here, the possibility of obtaining further informa-
tion about the noise by calculating fluctuations about a non-
linearly saturated steady state is potentially interesting.

Turning to our data, we observe that the physical process
described by the numerically obtained spectrum is not
merely fluctuations at the real frequency of the drift wave,
but the nonlinear saturation of these fluctuations as they are
amplified by the density gradient. This saturation amplitude
must be independent of the number of markers if the code
has converged; thus, we should expect the fluctuation spec-
trum to exhibit a large peak at �=�l,m with amplitude inde-
pendent of N. As well, the spectrum should contain peaks at
the normal mode frequencies �= ±�H with amplitudes that
decrease inversely with N. Figure 5 confirms that this is in-
deed the case; these simulations use �N

* =0.055 and �t
=0.125 while varying the particle count �N= �3.2�104 ,5.0

�105 ,1.0�106��. The other system parameters are given by
Lx=Ly =23,�=0.01,vte

2 =1837.0, and Te /Ti=1 �as in Fig. 3�.
It should be mentioned here that the spatially averaged �f� is
much smaller than the equilibrium distribution function F0�

near the phase velocity of the wave; we show this effect in
Fig. 6 for the electrons. Thus, the deviation from equilibrium
in the steady state is indeed small.

Some insight into the effects of discrete particle noise
can be obtained by studying the behavior of Fig. 5 as the
damping rate of the normal modes increases �this can be
done by reducing the size of the slab in the y direction�. As
we have previously noted, the concept of “normal modes” is
not well-defined for large damping rate. As random fluctua-
tions Landau damp away on time scales increasingly near the
period of the real oscillation of the “wave,” the energy in
these fluctuations begins to spread from a single real fre-

FIG. 5. As the number of particles in the simulation is
increased, the saturation amplitude of the drift wave
remains constant while the amplitude of the spectral
noise carried by the �H modes �whose real frequencies
are indicated by dashed lines� decreases.

FIG. 6. The spatial average of the perturbed distribu-
tion function �fe, normalized to the value F0e�v� =0�
�where F0e is the background Maxwellian� for the three
simulations of Fig. 5. The resonant phase velocity of the
drift wave is indicated by the dashed lines.
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quency �that of the original normal mode� to a broadband in
frequency space, essentially creating a background of inco-
herent noise for modes of a given wavelength. Running
simulations to investigate the effects of this broad-spectrum
noise, we find that even when the normal modes of a system
are not well-defined, the fluctuation spectrum still predicts
the correct saturation amplitude �independent of particle
count� for the drift wave while preserving the favorable scal-
ing of the noise with particle count across the remainder of
the spectrum. Figure 7 shows this effect; for these simula-
tions, we have set Ly =12 and left the other system param-
eters unchanged from Fig. 5. It is noteworthy that while the
normal mode fluctuations are well-separated from the grow-
ing drift mode in the spectra of Fig. 5, the broad, noisy band
of discreteness-induced fluctuations in the top portion of Fig.
7 has spread to encompass the frequency of the drift mode
�because of the low particle count�. Nevertheless, this over-
lapping �in frequency space� of incoherent noise and �small-
amplitude� coherent drift fluctuations has no appreciable ef-
fect on the saturation amplitude of the drift mode; the
amplitude remains constant as the increasing particle count
reduces the discrete particle noise at the drift frequency to
negligible values. One might wonder about the validity of
this result if the saturation amplitude were much lower than
the amplitude of the incoherent noise; such a case might
arise for weakly unstable drift modes �recall that the satura-
tion amplitude scales as the growth rate, as in Eq. �34��.
However, in particle simulations the amplitude of the noise
can always be reduced by using more simulation particles,
and convergence studies can be used to discern when the
contribution of the noise has become negligible. For these
long-wavelength modes, and in the absence of mode cou-
pling, this condition is well satisfied when the number of
markers used is on the order of 30 particles per species per

grid cell �the middle graphs of Figs. 5 and 7�. In general, the
inclusion of mode coupling effects will increase the number
of particles per cell needed to guarantee convergence, and we
address this issue below. Geometrical effects �e.g., the tran-
sition from slab to toroidal geometry� may also play a role,
though a thorough treatment of that issue is beyond the scope
of this work.

Because we have only retained the �±1, ±1� Fourier
components of the potential in our earlier simulations �effec-
tively removing coupling terms between short-wavelength
and long-wavelength modes�, it is of interest to assess the
effects of mode coupling on our conclusions. In general, we
find that the long-term behavior of the saturated drift modes
we have considered is not substantially affected by the pres-
ence of shorter-wavelength modes in the system. We con-
sider an elongated slab with simulation parameters Lx

=95.0,Ly =9.5,�=0.01,vte
2 =1837.0,Te /Ti=1, and �N

*

=0.043 with N=10 000 000 particles and Nx�Ny =128�32
grid points, and use the four-point averaging method of Ref.
30 to retain full gyroradius effects, allowing in this system
all modes with k��i�
2. This elongated geometry bears
some resemblance to experimentally observed plasmas in to-
kamaks, with variation in x and y corresponding to radial and
poloidal variation �and the �0,1� mode we study correspond-
ing to a radial streamer�. As shown in Fig. 8, although the
initial growth rate is affected somewhat by the presence of
other modes, the saturation amplitude of the �0,1� mode re-
mains consistent, and its long-time behavior is not substan-
tially affected.31 Though the signal is noisier when more
modes are retained, this can be easily dealt with by using
more particles in the simulation; we observe that the root-
mean-square deviation of the potential from its running av-
erage �over an interval Tav=500�t� increases by roughly a
factor of 2 for typical parameters when mode coupling ef-
fects are included. Consequently, increasing the number of
markers by a factor of 4 �relative to the case where mode
coupling is absent and the simulation has converged� is gen-
erally sufficient to compensate for the increased noise asso-
ciated with mode coupling in these simulations of slowly
growing drift modes.

VI. CONCLUSIONS

We have shown that when the normal modes ��H modes�
of the gyrokinetic plasma are well-defined, the fluctuation
energy carried by these modes scales inversely as the number
of simulation particles even in the presence of saturated low-
frequency drift instabilities. Although such instabilities are
driven when the plasma is not in thermal equilibrium, one
may nevertheless appeal to the fluctuation-dissipation theo-
rem to plausibly explain this effect; the power in the fluctua-
tion spectrum �in thermal equilibrium� is contained in high-
frequency normal mode fluctuations, but the introduction of
a mild density gradient significantly affects fluctuations only
at frequencies substantially lower than those of the normal
modes. These fluctuations are amplified �by the free energy
of the background gradient� until they saturate nonlinearly,
maintaining the plasma in a marginally stable, nonequilib-
rium state.

FIG. 7. In the absence of clearly defined normal modes �with the real fre-
quency of the strongly damped �H mode indicated by dashed lines�, the
broad spectrum of background noise overlaps the portion of the spectrum
occupied by the growing drift wave at low N. Nevertheless, the noise am-
plitude does not appreciably affect the saturation amplitude of this wave,
and favorable scaling of the noise amplitude is obtained as the particle count
is raised.
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Interestingly, the favorable scaling �with particle count�
of the fluctuation energy external to the drift wave is pre-
served even when the normal modes are not well-defined and
are replaced by a broad spectrum of incoherent, particle-
discreteness-induced noise not well separated from the drift
wave. Further, the saturation and long-time behavior of the
saturated drift modes is not substantially affected by mode
coupling, and fairly modest simulation parameters are suffi-
cient to adequately curtail the effects of discrete particle
noise of these waves when the long-term state of the plasma
contains only damped or marginally stable modes. We be-
lieve that the degree to which the latter result holds true in
more general situations is a question meriting further study,
and that the present work demonstrates the importance of
including the self-consistent plasma response when assessing
the effects of discrete particle noise in PIC simulations.
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