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Outline PPPL

Motivation: optimal particle-in-cell (PIC) simulations with electron dy-
namics

Electron Dynamics in PIC Simulations...or how to smdrrectly.. [1D
case: this talk; progress on 3D, toroidal case using Algebraic Multigrid
(EU-US TTF, September 2002)]

Splitting Scheme andf Scheme
Multigrid Solver for Nonlinear Elliptic Equations

Numerical Results; Linear Benchmarks; Nonlinear Saturation; Energy Con-
servation,...

Conclusions



Motivation PPPL

Full Kinetic Electron Response requires Global Solve for Scalar Fields at
each time step

Accurate treatment of electron dynamics requettsient global solvefor
elliptic-type problems on toroidal grids

Efficiency is crucial global solution required at each time step on a grid
with N = N, X Ny x N, ~ 10? x 10° x 10° = 10° points

Geometry Is importantno geometrical approximation of computational
domain

Advantages of MUGPICmodular structure (easy to maintain); easy to
parallelize (MPI + OpenMP); near-optimal efficiency;



Motivation (Remarks on § f Scheme) PPPL
Taken from Parker & Lee’s paper [Phys. Fluids B5(1), 77 (1993)]

Remark @ ”In order to further minimize the noise, we have used a cut-off scheme of

¢(x;) for the fast particles withy; > w/k(...)

Remark 1 "It is found that the conservation of number density, momentum, and energy in
the nonlinear stages of the simulations can be achiewgdif we use a sufficiently large of
particles(...)”

Remark 2 ”In the linear stage of that simulation, the particle conservation is near perfect and
theinaccuracy occurs only in the nonlinear stage due to numerical fiaise

Remark 3 "The implication here seems to be that one still has toaugery large number of
particleswith enough spatial and time resolutitoobtain reasonable conservation properties
(...)”

Remark 4 "Nevertheless, therrors for the conservation properties after nonlinear saturation
IS somewhat troublesome, since our ultimate goal is to use the scheme to study long-time
steady-state phenomega)”

Remark 5 "We were able to obtain energy conservation. However, compared to the number
needed to capture the relevant physics of the drift wave madeadry large number of parti-

cles was requirgd.)”

Splitting scheme removed| the limitations above
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1D Electrostatic Drift Waves PPPL

Start from
dF; OF; OF;
] =="J by +V VF——b Vdo—L =0
dt Ot + <U|| 0+ E> m; 0" 8?]” 7

whereb, = By/B, a unit vector andVy = cbyx V® /B, is theEx B drift
velocity; By = By (z + 6y) wheref < 1.

Standard f Scheme
Fj = Fyj+ 0 f;
Equation for the weightV; = 6 f;/ F; (GK units)
aw;

o = (=W |(byxX V) -k — o0y V] .

whereo; = Z,T./T;. The system of equations is closed with the gyrokinetic
Poisson equation (in the long wavelength limit)

VA0 = [T (0fe = 8f) dyy .



Adiabatic Electrons vs ... PPPL
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... Nonadiabatic Electrons PPPL
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How to Split Correctly? PPPL

Fy = H (D) Fyrj+hy

where, as beforef); is the Maxwellian distribution for particle specigs
and H (9) is a yet undetermined function of the electrostatic potential. The
so-called nonadiabatic part of the distribution functibp,is governed by

dh ; : 0P
J :—HVEVFM]—UHVH(D (Hl+%H) FMj_H/FMj )
dt ¥ T Ot
5 3

Demand that term2?) vanishes...
dH q;
o T,
with solution

Splitting Scheme




The equation governing the weight associated with the nonadiabatic part of
the distribution function|V; = h;/F}, is

de — d;
(1T Ve = 20
dt < W])( EK’]—i_TjSO)
where
o
= %t (polarization field)

Note Above Equation foll; is exact (no truncation in mode amplitude, etc..)
Nonlinear Gyrokinetic Poisson Equation

Viq)—(l—l—l)q):fr;o (he—hi>dv||—|—Q<(I)> :

-
where

Q(P)=exp(P) —exp(=D/7) = (1+1/7)D,
andr =T;/T..



Summary PPPL

0 f Scheme
e\\Weight Equation with Free Streaming Term
eLinear Elliptic Problem

Splitting Scheme
e\Weight Equation witiNo Free Streaming Term
eLinear Elliptic Problem
eNonlinear Elliptic Problem

Is there is any physical justification for the additional computational work?
yes...

10



Multigrid Solver for Nonlinear Elliptic Problems  pppL

For a configuration with period Nonlinear Poisson’s equation is of the form

d*F
LF=—— =S(F,F*.-.-;0 1
o = S(F P50 1)
wheref = 272 /¢ is an angle-like coordinate with periQad
S :Is a known source term; Uniform computational grid gsnodes. Prob-

lem (1) can be defined on a setadferlapping grids (or levelsgs
L0 ) — g

wherep = 0,1,---,Q, and( Is the total number of levels compatible with
the original number of grid pointd/

grid spacingp = 0) is A6 = 27 /Ny (finest grid)

grid spacing on coarser grids).= 2?A@ (for p > 0).

)

f: exact solutiorof Eq.(1)....f = L=S
F' denotes ampproximate solutigrthen thealgebraic errqr

e=f—F
and theresidual
r=5S—LF
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and related through the Residual Equation

Le=r (or LPelp) = ) > (2)

If A denotes an approximation @)~ then F?) = A®S®: in general,
the approximate solutio®) will depend on the initial guesg\”. Thus

F) — A ( S). Fo(p); Vp) | (3)

wherev, is the number of relaxation sweeps on IeweslndFo(p) IS the initial
guess.

Intergrid Transfer Operators

Prolongation OperatoFrom coarse grid to fine grid
o) 7 (p+1—p) e+l
Restriction Operatorn From fine grid to coarse grid

et 1 (p—p+1) @
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Multigrid V Cycle

V' cycle can be cast in the following algorithmic form of

MultiGrid V cycle
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PPPL
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Multigrid Solver: Example PPPL

Source term

S(0)=— % q {@q cos (qf) + Bq sin (qﬁ)] ,

qg=1
which corresponds to thexact solution

M M
f(0) = qgl ag cos (g0) + qgl Bysin(g0)

and )M = 12 is the total number of modes with amplitudes= 3, = 1, Vq.
Initial Profile (finest grid)

Fy(6) = m*sin (6/2)
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Multigrid Solver for Nonlinear Elliptic Problems 555,
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Multigrid Solver for Nonlinear Elliptic Problems 555,
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Multigrid Solver for Nonlinear Elliptic Problems 555,
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Multigrid Solver for Nonlinear Elliptic Problems 555,
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Multigrid Solver for Nonlinear Elliptic Problems 555,
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Linear Benchmarks (Linear Dispersion) PPPL

The distribution for speciegis written asF; = exp (—q,;®/1;) Far; + h; where the nonadia-
batic part,;, is governed by

i _ o <_%¢)

wherer; = kg;(v)); g;(v)) = 1—n; (1 =) /2; and@H = v),/Visj. Assuming perturbations
of the formexp (ik-r — iwt) and linearizing, we get

VE°I-’\',]

Fu; -

hj = o

: (5)

w.g;(T)) + o] o=k,

wherew, = (k,ps) cs/ L, is the drift frequencyy; = Z,7./T; and® = ed/T,. Multiplying
Eq.(5) bva’f and integrating over velocity space

/__:;O h; ’U||d’U||
wherew,; = v/2k Viyj, ¢ = w/ij; we have defined

/+OO ! exp (—:1:2> dx |

OOJ;_

for nonnegative integer; 7% (¢) = Z (¢) is the usual plasma dispersion function.
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Linear Benchmarks (Dispersion Relation) PPPL

The particle density for specigss

q; +o0
n; = nNgexp (—Tjj CID) + /_OO h;dv)

= Ny (1 — O'j@) + /_+OZO h]d’UH . (6)
Substituting Eq.(6) in the gyrokinetic Poisson equatiofip,>® = (n; — n.) /ng, and using
Eq.(6), we obtain the dispersion relation for electrostatic drift waves

(142 40w =—w[eZ(@)+ 2 62@)] +aleR@ -GRG) . @

T

whereR (¢;) = (1 —n;/2) Z (¢;) +n;¢ [+ ¢Z (¢)), 7 = T;/T, andb = k,*p,2. In the cold
lons, warm electrons limit

- >1> -
K\ Vini Ky Vine

Eq.(7) assumes the simplified form of
(1 +b)w=w,+ivm [wi (1 —7/2) —w] ,

which can be solved for the mode frequency
Wi
1+0b

(8)

Wy =
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and the linear growth rate

|>1\

Wy Wi (l —=1ne/2) —wy

2 k) \Vine 1+0b

T me w (1+b)(1—n./2)—1
\5 m; k”CS (1 +b)3

fy:

_—
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Linear Benchmarks (Linear Dispersion) PPPL

Velocity moment of linearized splitting scheme response + gyrokinetic Pois-
son Equation

(142 +bJw=-w[CZ )+ GZ(G)] +eGR(G) — GREG)

T

whereR (¢;) = (1—1;/2) Z (¢) + ;¢ [1+ G Z ()] /2. G = w/ (V2 Vi),
b = k,’p2 andZ(() is the plasma dispersion function.

Numerical SolutionMuller’s Algorithm in the complexv, — v plane
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Linear Benchmarks (Mode Frequency) PPPL
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Linear Benchmarks (Growth Rate) PPPL
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Power Spectrum PPPL

Parameters: 5000 time steps (nonlinear rdng; 8 on a 64-grid;N; = N, = 10946, k = 0.05;
ne=mn; = 0.0; 8§ = 0.01.
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Power Spectrum ¢ f scheme) PPPL
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Power Spectrum (splitting scheme) PPPL
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n.=mn; = 0.0; 8 = 0.01.
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Nonlinear Saturation PPPL

@sat <%>
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Parameters: nonlinear run witkt = 1.0; N; = N; = 6765; 0 = 0.01; L = 8 on 64-grid. Plain
line: three-wave mode coupling theory of Parker and Lee (Phys. Fuids, 1993)
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Simulations with Few Electrons PPPL
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Number Conservation PPPL
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Energy Conservation..j f Scheme PPPL
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Energy Conservation...Splitting Scheme PPPL
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Conclusions PPPL

ot pays off (both linear and nonlinearly) to split correctly... (splitting with
® In the electromagnetic case is not optimal (Y. Chen’s talk) , on phys-
iIcal and numerical grounds... (see papers by Krommes (1993) and Lee,
Lewandowskiet al (2001) re discussion on thermodynamics properties)

eSplitting scheme has favoradiaear andnonlinearproperties

eSimulations wih few electrons are accurg2eelectrons/cell yields good
results): impact on large-scale PIC codes which routinely run at 10 mark-
ers/cell (adiabatic regime)

eGood Energy Conservatigqno secular increase asarf)
eToroidal (axisymmetric) Case shows converged
eElectromagnetic Case is promisin{separate talk)

eMultigrid Particle-in-cell (MUGPIC) Conceptomputational work scales
linearly with number of markers and number of grid points in configura-
tion space, with no sacrifice on geometry or dubious assumptions...
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