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Outline PPPL

• Motivation: optimal particle-in-cell (PIC) simulations with electron dy-
namics

• Electron Dynamics in PIC Simulations...or how to splitcorrectly... [1D
case: this talk; progress on 3D, toroidal case using Algebraic Multigrid
(EU-US TTF, September 2002)]

• Splitting Scheme andδf Scheme

• Multigrid Solver for Nonlinear Elliptic Equations

• Numerical Results; Linear Benchmarks; Nonlinear Saturation; Energy Con-
servation,...

• Conclusions
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Motivation PPPL

• Full Kinetic Electron Response requires Global Solve for Scalar Fields at
each time step

• Accurate treatment of electron dynamics requiresefficient global solverfor
elliptic-type problems on toroidal grids

• Efficiency is crucial: global solution required at each time step on a grid
with N = Nφ × Nθ × Nr ∼ 102 × 103 × 103 = 108 points

• Geometry is important: no geometrical approximation of computational
domain

• Advantages of MUGPIC: modular structure (easy to maintain); easy to
parallelize (MPI + OpenMP); near-optimal efficiency;
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Motivation (Remarks on δf Scheme) PPPL

Taken from Parker & Lee’s paper [Phys. Fluids B5(1), 77 (1993)]

Remark 0: ” In order to further minimize the noise, we have used a cut-off scheme ofwi =

φ(xi) for the fast particles withv||i � ω/k||(...)
Remark 1: ”It is found that the conservation of number density, momentum, and energy in
the nonlinear stages of the simulations can be achievedonly if we use a sufficiently large of
particles(...)”
Remark 2: ”In the linear stage of that simulation, the particle conservation is near perfect and
theinaccuracy occurs only in the nonlinear stage due to numerical noise(...)”
Remark 3: ”The implication here seems to be that one still has to usea very large number of
particleswith enough spatial and time resolutionto obtain reasonable conservation properties
(...)”
Remark 4: ”Nevertheless, theerrors for the conservation properties after nonlinear saturation
is somewhat troublesome, since our ultimate goal is to use the scheme to study long-time
steady-state phenomena(...)”
Remark 5: ”We were able to obtain energy conservation. However, compared to the number
needed to capture the relevant physics of the drift wave model,a very large number of parti-
cles was required(...)”

Splitting scheme removesall the limitations above
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1D Electrostatic Drift Waves PPPL

Start from
dFj

dt
≡ ∂Fj

∂t
+

(
v||b̂0 + VE

) ·∇Fj − qj

mj
b̂0·∇Φ

∂Fj

∂v||
= 0 ,

whereb̂0 = B0/B0 a unit vector andVE = cb̂0×∇Φ/B0 is theE×B drift
velocity;B0 = B0 (ẑ + θŷ) whereθ � 1.
Standardδf Scheme

Fj = FMj + δfj

Equation for the weightWj ≡ δfj/Fj (GK units)

dWj

dt
= (1 − Wj)

[(
b̂0×∇Φ

) ·κj − σjv||∇||Φ
]

.

whereσj = ZjTe/Tj. The system of equations is closed with the gyrokinetic
Poisson equation (in the long wavelength limit)

∇2
⊥Φ =

∫ +∞
−∞ (δfe − δfi) dv|| .
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Adiabatic Electrons vs ... PPPL

Fully nonlinear simulations (no smoothing...)(T ∼ 10τ` = 10/γ`)
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... Nonadiabatic Electrons PPPL

Fully nonlinear simulations (no smoothing...)(T ∼ 10τ` = 10/γ`)
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How to Split Correctly? PPPL

Fj = H (Φ) FMj + hj ,

where, as before,FMj is the Maxwellian distribution for particle speciesj
andH (Φ) is a yet undetermined function of the electrostatic potential. The
so-called nonadiabatic part of the distribution function,hj, is governed by

dhj

dt
= −H VE·∇FMj︸ ︷︷ ︸

1

−v||∇||Φ
H ′ +

qj

Tj
H


︸ ︷︷ ︸

2

FMj − H ′FMj
∂Φ

∂t︸ ︷︷ ︸
3

,

Demand that term (2) vanishes...

dH

dΦ
= −qj

Tj
H

with solution

H = exp

−qj

Tj
Φ

 .

Splitting Scheme

Fj = exp

−qj

Tj
Φ

FMj + hj .
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The equation governing the weight associated with the nonadiabatic part of
the distribution function,Wj ≡ hj/Fj, is

dWj

dt
= (1 − Wj)

VE·κj +
qj

Tj
ϕ


where

ϕ ≡ ∂Φ

∂t
(polarization field)

NoteAbove Equation forWj is exact (no truncation in mode amplitude, etc..)
Nonlinear Gyrokinetic Poisson Equation

∇2
⊥Φ −

1 +
1

τ

Φ =
∫ +∞
−∞ (he − hi) dv|| + Q (Φ) ,

where

Q (Φ) ≡ exp (Φ) − exp (−Φ/τ ) − (1 + 1/τ ) Φ ,

andτ = Ti/Te.
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Summary PPPL

δf Scheme

•Weight Equation with Free Streaming Term

•Linear Elliptic Problem

Splitting Scheme

•Weight Equation withNo Free Streaming Term

•Linear Elliptic Problem

•Nonlinear Elliptic Problem

Is there is any physical justification for the additional computational work?
yes...
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

For a configuration with period̀, Nonlinear Poisson’s equation is of the form

LF ≡ d2F

dθ2
= S

(
F,F 2, · · · ; θ) (1)

whereθ ≡ 2πx/` is an angle-like coordinate with period2π
S : is a known source term; Uniform computational grid hasNθ nodes. Prob-
lem (1) can be defined on a set ofoverlapping grids (or levels)as

L(p)F (p) = S(p) ,

wherep = 0, 1, · · · , Q, andQ is the total number of levels compatible with
the original number of grid pointsNθ

grid spacing(p = 0) is ∆θ = 2π/Nθ (finest grid)
grid spacing on coarser grids :δθ = 2p∆θ (for p > 0).

f : exact solutionof Eq.(1).....f = L−1S
F denotes anapproximate solution, then thealgebraic error,

e ≡ f − F

and theresidual

r ≡ S − LF
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and related through the Residual Equation

Le = r
(
or L(p)e(p) = r(p) .

)
(2)

If A(p) denotes an approximation toL(p)−1
thenF (p) = A(p)S(p); in general,

the approximate solutionF (p) will depend on the initial guessF (p)
0 . Thus

F (p) = A(p)
(
S(p);F

(p)
0 ; νp

)
, (3)

whereνp is the number of relaxation sweeps on levelp andF
(p)
0 is the initial

guess.

Intergrid Transfer Operators

Prolongation OperatorFrom coarse grid to fine grid

F (p) = I (p + 1 7→ p) F (p+1)

Restriction Operator From fine grid to coarse grid

F (p+1) = I (p 7→ p + 1) F (p)
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Multigrid V Cycle PPPL

V cycle can be cast in the following algorithmic form of
MultiGrid V cycle

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)

r(p) = S(p) − L(p)F (p) ; p = 0, 1, · · · , Q − 1

S(p+1) = I (p 7→ p + 1) r(p)

..... . ................................ (4)

F
(p)
0 ⇐= F (p) + I (p + 1 7→ p) F (p+1)

F (p) = A(p)
(
S(p); F

(p)
0 ; νp

)
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Multigrid Solver: Example PPPL

Source term

S (θ) = − M∑
q=1

q2
[
α̂q cos (qθ) + β̂q sin (qθ)

]
,

which corresponds to theexact solution

f (θ) =
M∑

q=1
α̂q cos (qθ) +

M∑
q=1

β̂q sin (qθ) ,

andM = 12 is the total number of modes with amplitudesα̂q = β̂q = 1, ∀q.
Initial Profile (finest grid)

F0(θ) = π2 sin (θ/2)
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

10 Multigrid V Cycles
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

Single-grid (Jacobi) Solver
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

After 1 V cycle...
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

After 3 V cycles...
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Multigrid Solver for Nonlinear Elliptic Problems PPPL

After 7 V cycles...
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Linear Benchmarks (Linear Dispersion) PPPL

The distribution for speciesj is written asFj = exp (−qjΦ/Tj) FMj + hj where the nonadia-
batic part,hj, is governed by

dhj

dt
= exp

−qjΦ

Tj


VE·κj +

qj

Tj

∂Φ

∂t

FMj ,

whereκj = κgj(v||); gj(v||) = 1−ηj

(
1 − v||2

)
/2; andv|| = v||/Vthj. Assuming perturbations

of the formexp (ik·r − iωt) and linearizing, we get

hj =
[
ω?gj(v||) + σjω

] FMj

ω − k||v||
Φ̃ , (5)

whereω? = (kyρs) cs/Ln is the drift frequency,σj = ZjTe/Tj andΦ̃ = eΦ/Te. Multiplying
Eq.(5) byv||k and integrating over velocity space

∫ +∞
−∞ hjv

k
||dv|| = −n0

(√
2Vthj

)k

ω||j

{
[σjω + ω? (1 − ηj/2)] Z(k) (ζj) + ω?ηjZ

(k+2) (ζj)
}
Φ̃ ,

whereω||j ≡
√

2k||Vthj, ζj ≡ ω/ω||j; we have defined

Z(k) (ζ) ≡ 1√
π

∫ +∞
−∞

xk

x − ζ
exp

(
−x2

)
dx ,

for nonnegative integerk; Z(0) (ζ) ≡ Z (ζ) is the usual plasma dispersion function.
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Linear Benchmarks (Dispersion Relation) PPPL

The particle density for speciesj is

nj = n0 exp

− qj

Tj
Φ

 +
∫ +∞
−∞ hjdv|| ,

= n0

(
1 − σjΦ̃

)
+

∫ +∞
−∞ hjdv|| . (6)

Substituting Eq.(6) in the gyrokinetic Poisson equation,ky
2ρs

2Φ̃ = (ni − ne) /n0, and using
Eq.(6), we obtain the dispersion relation for electrostatic drift waves1 +

1

τ
+ b

ω = −ω

ζeZ (ζe) +
1

τ
ζiZ (ζi)

 + ω? [ζeR (ζe) − ζiR (ζi)] , (7)

whereR (ζj) ≡ (1 − ηj/2) Z (ζj) + ηjζj [1 + ζjZ (ζj)], τ = Ti/Te andb = ky
2ρs

2. In the cold
ions, warm electrons limit

ω

k||Vthi
� 1 � ω

k||Vthe
,

Eq.(7) assumes the simplified form of

(1 + b) ω = ω? + i
√

πζe [ω? (1 − ηe/2) − ω] ,

which can be solved for the mode frequency

ωr =
ω?

1 + b
(8)
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and the linear growth rate

γ =

√√√√π

2

ωr

k||Vthe

ω? (1 − ηe/2) − ωr

1 + b

=

√√√√√π

2

me

mi

ω?
2

k||cs

(1 + b) (1 − ηe/2) − 1

(1 + b)3
.
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Linear Benchmarks (Linear Dispersion) PPPL

Velocity moment of linearized splitting scheme response + gyrokinetic Pois-
son Equation

1 +
1

τ
+ b

ω = −ω
ζeZ (ζe) +

1

τ
ζiZ (ζi)

 + ω? [ζeR (ζe) − ζiR (ζi)] ,

whereR (ζj) ≡ (1 − ηj/2) Z (ζj)+ηjζj [1 + ζjZ (ζj)] /2, ζj ≡ ω/
(√

2k||Vthj

)
,

b = ky
2ρs

2 andZ(ζ) is the plasma dispersion function.

Numerical Solution: Muller’s Algorithm in the complexωr − γ plane
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Linear Benchmarks (Mode Frequency) PPPL

Parameters:θ = 0.01, ∆t = 1.0, Ni = Ne = 6765, L = 8 on a 64-grid;ηe = ηi = 0.0. Only

n = 1 mode(k⊥ρs ' 0.78)
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Linear Benchmarks (Growth Rate) PPPL

Parameters:θ = 0.01, ∆t = 1.0, Ni = Ne = 6765, L = 8 on a 64-grid;ηe = ηi = 0.0. Only

n = 1 mode(k⊥ρs ' 0.78)
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Power Spectrum PPPL

δf scheme (top), splitting scheme (bottom)

Parameters: 5000 time steps (nonlinear run);L = 8 on a 64-grid;Ni = Ne = 10946, κ = 0.05;

ηe = ηi = 0.0; θ = 0.01.
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Power Spectrum (δf scheme) PPPL

Parameters: 5000 time steps (nonlinear run);L = 8 on a 64-grid;Ni = Ne = 10946, κ = 0.05;

ηe = ηi = 0.0; θ = 0.01.
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Power Spectrum (splitting scheme) PPPL

Parameters: 5000 time steps (nonlinear run);L = 8 on a 64-grid;Ni = Ne = 10946, κ = 0.05;

ηe = ηi = 0.0; θ = 0.01.
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Nonlinear Saturation PPPL

Parameters: nonlinear run with∆t = 1.0; Ni = Ni = 6765; θ = 0.01; L = 8 on 64-grid. Plain

line: three-wave mode coupling theory of Parker and Lee (Phys. Fuids, 1993)
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Simulations with Few Electrons PPPL

Parameters:Ni = 10946, Ne = 144 (squares),Ne = 233 (diamonds),Ne = 4181 (triangles);

on a 512-grid withκ = 0.15
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Number Conservation PPPL

Nonlinear Run withNe = Ni = 6765...〈〈We〉〉 = 4.3×10−5 (δf scheme)...〈〈We〉〉 = 3.2×10−7

(splitting scheme)

31



Energy Conservation...δf Scheme PPPL

Nonlinear Run withNe = Ni = 6765
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Energy Conservation...Splitting Scheme PPPL

Nonlinear Run withNe = Ni = 6765...no secular increase as in theδf scheme
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Conclusions PPPL

•It pays off (both linear and nonlinearly) to split correctly... (splitting with
Φ in the electromagnetic case is not optimal (Y. Chen’s talk) , on phys-
ical and numerical grounds... (see papers by Krommes (1993) and Lee,
Lewandowskiet al (2001) re discussion on thermodynamics properties)

•Splitting scheme has favorablelinear andnonlinearproperties

•Simulations wih few electrons are accurate(2 electrons/cell yields good
results): impact on large-scale PIC codes which routinely run at 10 mark-
ers/cell (adiabatic regime)

•Good Energy Conservation(no secular increase as inδf )

•Toroidal (axisymmetric) Case shows convergedχi

•Electromagnetic Case is promising...(separate talk)

•Multigrid Particle-in-cell (MUGPIC) Concept: computational work scales
linearly with number of markers and number of grid points in configura-
tion space, with no sacrifice on geometry or dubious assumptions...
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