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Introduction 

 

Using the properties of the Grad-Shafranov (GS) 

equation, Christiansen and Taylor (CT) have 

shown[1] that complete MHD equilibria may be 

obtained for axisymmetric  tokamaks with  

noncircular cross-sections, provided that one 

initially knows only the shapes of the flux 

surfaces.  Starting from a 3D generalization of 

the GS equation[2],  we have recently 

demonstrated[3]  that this remarkable result 

can be extended to 3D systems like 

stellarators.  

 

 

A code Profile_Invert to practically implement 

our earlier formal result is nearing 

completion. Here, we describe the current 

status of the code. 
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Theory 
 

Assume we are given toroidal equilibria 

∇p = JxB, µ0J = ∇xB       (1) 

with good flux surfaces, described by flux-

surface label ρ(x), hence  

Bρ ≡ ∇ρ.B = 0, Jρ ≡ ∇ρ.J = 0 .    (2) 

 

We parametrize real-space position by flux 

coordinates {qi}≡{ρ,θ,ζ} (i=1-3). For a starting 

“reference” system we take ζ=ζg, the geometric 

toroidal angle. 

 

For 2D (axisymmetric) systems, one uses the 

“mixed” representations 

B = ∇ψxb+bF, µ0J = -b∆*ψ+∇Fxb    (3) 

 

(with b2∆*ψ≡∇.(b2∇ψ), b≡∇ζg=ζˆ / R, so b2= R-2) to 

obtain the GS equation: 
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b2∆*ψ = -µ0p’/ψ’- b2FF’/ψ’,     (4) 

where p’≡ dp/dρ. 

 

For 3D systems, it is shown in [2] that a mixed 

representation may again be given, making use 

of 2 special coordinate systems, the “natural” 

& “conatural” systems {ρ,θn,ζn} & {ρ,θc,ζc}, 

satisfying the similar determining equations 

∇.[∇ρx(∇θnx∇ρ)]=0, ∇.[∇ρx(∇ζnx∇ρ)]=0,      (5) 

∇.[∇ρx(∇θcx∇ρ)/|∇ρ|2]=0,∇.[∇ρx(∇ζcx∇ρ)/|∇ρ|2]=0 

Then the generalized mixed rep is given by: 

B = ∇ψxbc+bnF, 

 µ0J = ∇x(∇ψxbc)+∇Fxbn+F∇xbn,            (6) 

where bn,c≡en,c/(en3.ec3), and en,c≡∂x/∂ςn,c is the 

contravariant basis vector for ςn,c. 
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This yields the 3D-GS equation[2]: 

bc
2∆c*ψ = -µ0p’/ψ’- bn2FF’/ψ’+Fbc.∇xbn-F’bc.bnx∇ρ  

-(F/ψ’|∇ρ|2)(bnx∇ρ).∇x(bcx∇ψ) +    

(F2/ψ’|∇ρ|2)(bnx∇ρ).(∇xbn),     (7) 

 

where bc2∆c*ψ ≡-bc.∇x(∇ψxbc) =∇.(bc2∇ψ)-∇ψ.bcx(∇xbc). 

 

Following CT, we write ψ’x(7) as a product of 

some combination of the profile functions 

{p’,ψ’,F}(ρ) times coefs {A,C,Di=1-5}(x) which 

vary over a flux surface: 

ψ′ψ′′Α+ψ′2 C = -D1µ0p′ -D2FF′ -D3F2 –D4(Fψ′)’-D5(Fψ′), (8)  

 

where  A≡ |∇ρ|2, C≡ bc2∆c*ρ,  D1≡1, D2≡bn2 , 

D3 ≡-(bnx∇ρ).(∇xbn)/|∇ρ|2, D4≡bc.(bnx∇ρ),  

D5≡-bc.(∇xbn)+(bnx∇ρ).∇x(bcx∇ρ)/|∇ρ|2 .    (9) 

 

These coefficients are all even under 

stellarator symmetry {θ,ζ} → -{θ,ζ}. Only A,C, 

D1, and D2 are ≠ 0 in the 2D case. 
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Our goal is to solve Eq.(8) for the profiles 

{p’,ψ′,F}. For this, we must  

(a)compute the natural & conatural coordinates, 

to evaluate the coefficients {A,C,Di} in (8), 

and then  

(b)solve (8) as a system of o.d.e’s in ρ. 

 

Computer Code Profile_Invert  

Profile_Invert accepts, as input, a Fourier 

representation of flux surfaces corresponding 

to a 3D stellarator equilibrium. We envision 

the flux surface shapes being provided 

experimentally by, for example, soft X-ray 

tomographic data. The first major step of 

Profile_Invert is to obtain the natural and co-

natural coordinates for the equilibrium, 

necessary for obtaining bn and bc and the 

coefficients that appear in Eq.(9). The second 

major step is the solution of Eq.(8), leading 

to the profiles of pressure and current. 
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- ∂/∂θ γ33 + ∂/∂ζ γ23 

   ∂/∂θ γ23 - ∂/∂ζ γ22 

Calculating the natural and 

co-natural coordinates 

 
Following Degtyarev et al., the natural   

coordinates θn, ζn  are related to “background” 

cylindrical coordinates through transformation 

functions ηθ
 and ηζ: 

 θn = θ + ηθ, ζn = ζ + ηζ .   

The ηθ
 and ηζ are solutions of 

[∂/∂θ γ33 ∂/∂θ - ∂/∂θ γ23 ∂/∂ζ   

  -∂/∂ζ γ23 ∂/∂θ + ∂/∂ζ γ22 ∂/∂ζ]{     ={ 

 

where γij = gij/√g. The γij are determined from 

the given plasma shape. The equation is solved 

by calling a MUDPACK library routine. 

 

ηθ
 

ηζ
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Having found the transformation to natural 

coordinates, inductances αij are calculated 

which relate the poloidal and toroidal fluxes 

to the poloidal and toroidal currents: 

 

J  = -α22 Ψ’+ α23 Φ’, F = -α23 Ψ’+ α33 Φ’, (10) 

α22 = < γ22 (1+ ∂ηζ/∂ζ )- γ23 ∂ηζ/∂θ >θ
 

α23 = < γ23 (1+ ∂ηζ/∂ζ )- γ33 ∂ηζ/∂θ >ζ 

α33 = < γ33 (1- ∂ηθ/∂ζ )+ γ33 ∂ηθ/∂θ >ζ                                               

 

These are needed for the evaluation of the  

natural and co-natural b field expressions:  

bn = bn
2
 e2 +bn

3
 e3 ; 

bn
2=-(∂ηθ/∂ζ)/(α33 √g),bnζ=(1+∂ηθ/∂θ) /(α33 √g). 

bc = bc1 e1
 +bc2 e2

 +bc3 e3; 

bc2=(1+∂ηθ/∂θ) α23/α33+∂ηζ/∂θ,   

bc3=(∂ηθ/∂θ)α23/α33+(1+∂ηθ/∂θ), 

bc1=- (g12/g11)bc2-(g
13/g11)bc3. 

 

The calculation of bn and bc is parallelizable. 
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Sol’n of radial eqn: Method-1 

 
We generalize the method in [1], making use of 

the great redundancy in Eq.(8) pointed out by 

CT. We write (8) as 

-A u1-C u2 = Dk vk,       (11) 

 

where uj=1,2≡{ψ′ψ′′,ψ′2}, vk=1,5≡{µ0p’,FF’,F
2,(Fψ′)’,(Fψ′)}. 

Taking flux-surface averages <hi(x)(10)> of 

Eq.(11), with hi=1-6(x) 6 independent “test” 

functions, yields 

-Bij uj = Eik vk ,        (12) 

(summation over repeated indices j=1-2, k=1-5 

implied), with Bij≡ <hi {A,C}>, Eik≡< hi Dk>. 

We 1st solve (12) for the vk in terms of the uj, 

making use of the 1st 5 equations in (12). Thus 

restricting i to the range 1-5 there, we solve 

(12) by inverting Eik: 

vi = -Fij uj,         (13) 

with  

Fij≡ Eik-1 Bkj (i=1-5, j=1-2). 



 

 

 

Putting this into the i=6th equation, one 

obtains 

Gj uj = 0,         (14) 

with  

Gj≡B6j – E6k Fkj (j=1-2). 

 

(14) is of the same form as CT obtain in [1],  

ψ′′/ψ′= u1/u2 = -λ(ρ), with λ≡G2/G1, solved as in [1] 

for ψ′(ρ): 

  ψ′(ρ) = ψ0′ exp[-I(ρ)], with I(ρ)≡∫ρ
From this, one computes the uj, a

the vk, which give p’(ρ) and F(ρ)

then used in Eqs.(10) to get J(ρ)

 

-Consistency Relations (CRs): 

From the {uj,vk}(ρ), one notes th

more than 1 way to compute the b

{p’,ψ′,F}(ρ). E.g., F is given by

 

ρ
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0dρ1λ(ρ1).  (15) 

nd from (13), 

. These are 

, Φ’(ρ). 

at there is 

asic profiles 

 any of  



 

 

F=[F0
2+2∫ρ0

F=(Fψ′)/ψ′ 

(Fψ′) is g

(Fψ′)= v5,

Finally, 

for v1≡ p’

where V’≡

CRi hold 

proper MH

 

Test Ca
 
Flux surf
 
R2(ρ,θ) = 
z(ρ,θ) = ρ
 
where Rm

2≡
α > 0, 0  ≤  σ
The coefs
  
ASol = cos2

     ρsin

 
ρ
 dρ1 v2]
1/2, F=v3

1/2, or  

≡v5/ψ′.        (CR1) 

iven in 2 ways: 

 or (Fψ′)= ∫ρ
pressure ba

:  p’=(J’ψ′

dV/dρ, V≡(2π)

only if the

D equilibri

se-1: 2D

ace shape: 

Rm
2 + 2ρcosθ

sinθ/[α (R2-

[(∆2+δ2)/2]1

  ≤ δ < ∆.     
 {A,C,Di} ca

θ + α2 sin2θ
2θ[2cosθ + ρ
ρ
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0 dρ1v4 .    (CR2) 

lance gives 2 expressions 

 –F’Φ’)/V’,   (CR3) 

-2x(volume within ρ). These 

 coefs {A,C,Di} are from 

a. 

 Solovev equilibrium 

,    
σ2)]1/2,     (16) 

/2, ∆≡R0+a, δ≡R0-a, and  

n be obtained analytically: 

(R2-σ2)/R2 + 
sin2θ/(R2-σ2)]/(R2-σ2), 
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CSol = {sin2θ + α2 cos2θ(R2-σ2)/R2}/ρ − 
  sin2θ[2cosθ + ρsin2θ/(R2-σ2)]/(R2-σ2), 

D2
Sol = 1/R2. 

 
-The code computes these numerically from (16), 
and applies the sol’n method just discussed to 
obtain profiles {p’,ψ′,F}. These may be compared 
with analytic expressions for these: 
ψ’ ≡dρψ=2ρ/(aR0)2, 
dψp = -2(1+α2)/(aR0)

2, 
dψF

2 = 4α2σ2/(aR0)
2.       (17)  

 
 
 
 
 
-Results: 

 
 

 

ψ′

numerically inferred analytic expressions

ρ

ψ′ 

F

Φ′
V′p′

J
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-Method-1 has been successfully applied to 2D 
equilibria, including the above Solovev case, 
as well as to 2D numerical VMEC equilibria. 
However,  it has not yet been successful on 3D 
equilibria, for reasons we now discuss. 

  
 
Test Case-2: 3D Equilibrium  
To leading order in an expansion around a 
circular magnetic axis, flux surfaces for an N 
field-period stellarator have elliptical 
toroidal cross sections:  
 

R = R0[1 + ε{cos(θ) + ξ cos(θ + Ν ζ)}] 
Z = εR0[sin(θ) − ξ sin(θ + Ν ζ)}].          (18) 
 

Here, R0 is the radius of the magnetic axis, 
ρ∈[0,1] is a flux surface label, ε=ρΓ0/R0 is the 
expansion parameter, ρΓ0 is the average minor 
radius  of a flux surface, and ξ∈[0,1] controls 
the ellipticity of the flux surfaces.  
 
For a vacuum configuration (p’=0=F’), the 
rotational transform at the magnetic axis is   
ιιιι0 = N ξ ξ ξ ξ/(1+ ξ ξ ξ ξ2) (eg see Garren, Boozer [4]). 
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With shape Eq.(18), analytic expressions for A, 
C, and the Di appearing in Eq.(8) can be found, 
by expansion to leading order. They are:  
  
A = a1-a2cos(2θ+Nζ), C = ρ-1(a1+a2cos(2θ+Nζ)), 
D3 = 0, D4 = ρb2cos(2θ+Nζ), D5 =-b1–b2 cos(2θ+Nζ),  
where 
a1 =(1+ ξ2)/R02Γ0

2(1- ξ2)2, a2 =2ξ/R02Γ0
2(1- ξ2)2, 

b1 =2Nξ2/R03(1- ξ2)2, b2 =Nξ/R03(1- ξ2).         (19) 
Since we assume a vacuum configuration 
(p’=0=F’) we can also assume D1=0=D2 in Eq.(8). 
  
- Solution Method-1 applied to the 3D equil. 
 
We notice that the solution procedure using 
Method-1, leading to Eq.(14), requires taking 
flux surface averages with one more independent 
test function than there are vk functions to 
determine. In the general case, there are 5 
functions vk=1,5={µ0p’,FF’,F

2,(Fψ′)’,(Fψ′)}. For 
the 3D equilibrium model discussed in this 
section, the radial equation analogous to 
Eq.(8) that has to be inverted (solved for 
ψ′ and F) is  
 
ψ′ψ′′Α+ψ′2 C = –D4(Fψ′)’-D5(Fψ′).  (8) 
 
There are 2 vk functions, {(Fψ′)’and (Fψ′)}. 
Method-1 therefore requires 3 independent test 
functions hi(x) to obtain Eq.(14). However, the 
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expressions for A, C and Di=4,5 clearly show that 
only 2 independent test functions exist for the 
3D model, namely h1= 1 and h2=cos(2θ+Nζ). 

 
The root of the problem appears to lie in the 
consistency relations: To solve Eq.(8) we 
should not consider F2 to be independent of FF’, 
or (Fψ′)’to be independent of(Fψ′). 
 
Sol’n of radial eqn: Method-2 
Noting that 2ψ′ψ′′ = d(ψ′2)/dρ, and (Fψ′)’=d(Fψ′)/dρ, 
we define new dependent variables X=ψ′2 and 
Y=Fψ′, so that Eq.(8) becomes 

(A/2)X'+  C X = –D4 Y’-D5Y.               (20) 

Taking 2 flux surface averages of Eq.(20) 
yields a matrix equation 

α α α α [         ]      = −β      = −β      = −β      = −β[  ]                       (21)     

where α, β are 2x2 matrices. We can solve for 
Y’,Y as functions of X’ and X to obtain 
Y’ = -[(β−1α)11X’ + (β−1α)12X], 

Y  = -[(β−1α)21X’ + (β−1α)22X].                (22) 

Equating the RHS of Eq.(22a) with d/dρ of the 
RHS of (22b) yields a 2nd order d.e. for X=(ψ′)2: 
 

X’ 
X  

y’ 
y 
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(β−1α)21X” + [(β−1α)22+(β−1α)21’-(β−1α)11 ]X’+               

                       [(β−1α)22’-(β−1α)12]X = 0. 

After solving for X Eq.(22b) is solved 
algebraically for Y, leading to F=Y/ψ′.  
 
For the 3D equilibrium model coefficients, 
Eq.(19),  
(β−1α)11=-(a1/b1+a2/b2)/2ρ, (β−1α)12=-(a1/b1-a2/b2)/ρ2, 

(β−1α)21=-a1/2b1,        (β−1α)22=-a1/b1ρ. 

This leads to the solution X ∝  ρ2     ψ′=ψ′ρ=1 ρ.  

 
Substituting for X in Eq.(22b) gives  
F = 2ψ′ρ=1 a1/b1 = Const, as required for a vacuum 
solution.  
 
Using the inversion derived expressions for F 
and ψ′, expressions a1 and b1 from Eq.(19), and 
using √g =ρΓ0

2R0(1-ξ2) from Eq.(16),  we obtain an 
expression for the rotational transform at the 
magnetic axis, ι0=(ψ′/√g)/(F/R0

2):   
We find ιιιι0 = N ξ ξ ξ ξ2/(1+ ξ ξ ξ ξ2), in agreement with the 
known value of ιιιι0  for the model equilibrium[4]. 
 

 
The Method-2 formulation is easily generalized 
to the case where p’,F’≠ 0: Variables X and Y 
are supplemented with a 3rd variable Z≡F2. 
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<h1(x)Eq.8> is used to eliminate the p’ term, 
and an additional 4 independent averages lead 
to a second order d.e. for X=ψ′2. After solving 
for X=ψ′2, algebraic substitution again obtains 
F.  
 
Although Method-2 incorporates several 
consistency relations, the nonlinear CR that 
relates variables ψ′2, Fψ′ and F2, namely (Fψ′)2 = 

F2x ψ′2, has not been incorporated. While Method-2 
has successfully demonstrated inversion of the 
model 3D equilibrium, it remains to be seen 
whether it can successfully invert a full 
current, full beta NCSX equilibrium. To test 
this, Profile_Invert will take plasma shapes 
from the output of VMEC equilibria. Predicted 
profiles from Profile_invert will then be 
compared with the profiles originally input to 
VMEC. 

 
Sol’n of radial eqn: Method-3 
-An alternate sol’n method to Method-2  
writes Eq.(8), after the p’ term has been 
removed, as 

α . α . α . α . X’= −β.−β.−β.−β.X ,                     (23)    

where X≡[X,Y,Z]≡[ ψ′2,(Fψ′),F2], and α, β α, β α, β α, β are 3x3 
matrices of the coefficients already displayed.  
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This is a system of 3 1st-order o.d.e.’s, which 
may be simply integrated in ρ. It does not 
require taking higher derivatives of the coefs. 
The merits & weaknesses of Methods 2 & 3 are 
under study. 
 
 
Summary & Discussion: 
 

-We have built a code Profile_Invert which 
implements a method described earlier[3] for 
inferring the radial profiles of 3D equilibria 
from only knowledge of the flux surface shapes. 
 

-The 1st method of solving the radial equations 
called for by the is successful on 2D 
equilibria, but thus far not on 3D equilibria, 
probably because of difficulties satisfying 
consistency rel’ns in the equations. 2 
additional methods are now under study which 
should help to remedy this problem. 
 
-Applying Method-2 to a model analytic 3D 
equilibrium, we have analytically established 
that 3D profiles can in fact be inferred from 
the basic equation (8) of the method.  
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