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Abstract. Polyatomic molecules are described by nonintegrable Hamiltonians. For such 
systems it has been predicted (Percival 1973) that there are two regions of the quantal 
spectrum with contrasting properties. We obtain eigenvalues for the Henon-Heiles non- 
integrable Hamiltonian and show that two regions of the quantal spectrum can be found 
which behave differently under a slowly changing perturbation. This behaviour is required 
by Percival for the existence of regular and irregular spectra. 

1. Introduction 

The quantal energy spectrum of a nonintegrable Hamiltonian is expected to exhibit two 
types of behaviour. At low energies the energy levels belong to a regular spectrum, and 
have the following property (Percival 1973). 

A state with vector quantum number n corresponds to regular phase space trajec- 
tories of the corresponding classical system, each of which lies on an N-dimensional 
toroid, where N is the number of degrees of freedom. 

At higher energies it is predicted that energy levels exist belonging to an irregular 
spectrum. States belonging to an irregular spectrum have the following properties : 

(a) A state of an irregular spectrum corresponds to irregular phase space trajectories 
of the classical system which fill a ( 2 N -  1)-dimensional volume of phase space in the 
(2N - 1)-dimensional energy shell. 

(6) The energy levels of an irregular spectrum a're more sensitive to a slowly changing 
or fixed perturbation than those of the regular spectrum. 

(c) The discrete bound state quantal spectrum must tend to a continuous classical 
spectrum in the classical limit. The energy differences 

E(Y)-E(Yo)  = hw 

for fixed stationary Y o  and varying Y form a discrete distribution which tends to the 
continuous distribution in hw. The distribution of levels of the irregular spectrum 
could take on the appearance of a random distribution. 

These and other predictions were based on the KAM and Sinai theorems of classical 
dynamics, and also on the numerical experiments of various authors on classical non- 
integrable systems. 

This paper presents preliminary results which show a division of the quantal energy 
spectrum of a simple nonintegrable Hamiltonian into two regions with contrasting 
properties. In particular, the behaviour of the energy spectrum under the influence of 
a fixed, and of a slowly varying perturbation is investigated. 
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2. Theory 

The system considered in this communication has been studied classically by HCnon 
and Heiles (1964). By integrating the classical equations of motion for the potential 

u(x, y )  = gx2 + y2)  + a(x2y  - i y 3 )  (1) 

with cx = 1, they found that for energies below a critical energy 

E" z 0.680 ( 2 )  

where D = 1/6a2 is the depth of the potential well, all trajectories calculated lie on well- 
defined two-dimensional integral surfaces in the four-dimensional phase space (figure 1). 
For energies slightly above the critical energy however, trajectories are found which 
are unstable with respect to close starting conditions and fill a three-dimensional volume 
of phase space in the three-dimensional energy shell (figure 2).  At still higher energies, 
this second type of trajectory dominates but some of the regular trajectories remain. 

These results indicate a transition from nonstatistical (regular) to stochastic (irregular) 
behaviour as the energy is raised through the critical energy. Although the relatively 
crude computer calculations of Henon and Heiles' 1964 paper indicate an abrupt 
transition to stochastic behaviour at an energy E' % 0.1 1, in fact the transition is quite 
smooth over a small energy band. The narrow width of this energy band may be a 
characteristic of the Henon-Heiles system. 
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Figure 1. A surface of section cut in the phase space for the Henon-Heiles system taken at 
an energy E = 0.5 D. The closed curves correspond to classical trajectories which lie on 
two-dimensional toroids. 
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Figure 2. Surface of section at E = 0.75 D showing closed curves (as in figure 1) but also 
isolated points corresponding to a single trajectory. 

The correspondence principle interpretation of these results leads us to suspect that 
the quantal spectrum of the Hamiltonian with potential (1) will show a transition from 
a regular to an irregular spectrum at an energy given approximately by equation (2). 

We wish to find eigenvalues of the Henon-Heiles Hamiltonian 

H = f i p z  + p ; )  + $x2 + y 2 )  + a(x2y - s y 3 )  ( h  = 1 , m  = 1). 

Preliminary numerical studies of the quantum mechanics of this Hamiltonian have 
been carried out by Rice and co-workers (private communication) in connection with 
the vibrational relaxation in isolated molecules. However, they concentrate on other 
nonlinear systems. 

When written in polar coordinates the equilateral symmetry of the Henon-Heiles 
potential becomes evident. In polar coordinates the Hamiltonian becomes 

xr 
3 

H = Ho+-sin30 

where we have written as our unperturbed system the two-dimensional isotropic 
harmonic oscillator with unit frequency : 

H o  = $p,? + p i )  + 31.’. 
A more flexible choice for our basis system is preferred however. Writing 

H” = fip,? + p i ) + z o  1 2 2  r 



1912 N Pomphrey 

the full Hamiltonian becomes 

For computational purposes we choose the frequency w of our unperturbed system H'' 
to be that value which minimizes the volume of the phase space required to represent 
the bound energy surfaces of the perturbed system. The optimum value of w was found 
to be o = (1/3)1'2. 

The basis functions are of the forri 

6L1 = ~ ~ , ~ l ~ ~ , ~ l ( r ) ( e l l ~ ~ ( -  1)'"''@) 

where t' = n ,  + n2 and 1 = n 1  - n2 = k U ,  -t (U - 2), . . . , 0 or k 1 have their usual meaning. 
These trigonometric functions are chosen because they have a symmetry in common 
with the Hamiltonian, viz invariance with respect to reflection in the y-axis. 

Matrix elements of the perturbation were obtained using the well-known raising and 
lowering operator technique (Louck and Shaffer 1960). It is found that only states with 
1 quantum number differing by multiples of three are coupled by the perturbation. There 
is consequently a splitting of the Hamiltonian matrix into three submatrices according to 
whether the matrix elements are derived from states of the unperturbed system with I = 0, 
+1 or -1. A further splitting occurs because of the reflection symmetry mentioned above. 

Separate diagonalization of each submatrix is possible, but for ease of computation 
we deal only with the two submatrices that are coupled to the lII = 3 states. These 
matrices have to be truncated. The order was chosen large enough to ensure convergence 
to at least four decimal places for all those eigenvalues of interest. The problem of 
resonance may be ignored for the same reason as in a treatment of the Stark effect. 

For the five values of the perturbation parameter x chosen for the computations, 
matrices of order N ranging between 176 and 234 were diagonalized. The method of 
diagonalization employed the Householder technique for reducing the input matrix to 
tridiagonal form, followed by the Sturm Sequence method for locating the roots. The 
calculations were performed on an IBM 370/155 computer using double precision 
arithmetic. 

Three checks were performed on the eigenvalues : 
(i) With a small value of the perturbation parafieter a, the first few eigenvalues 

obtained using the program agree with second order quantum mechanical 
perturbation theory. 

(ii) Holding the Hamiltonian constant, the perturbation and basis system were 
altered by varying o. The resulting eigenvalues were found to be independent 
of w to the required precision. 

(iii) Convergence of the eigenvalues to four decimal places was checked by increasing 
the size of the basis set. 

3. Results 

The values of the perturbation parameter x employed in the calculations and the corre- 
sponding well depths, D ,  are shown in the table below. 

x 0.090 0.089 0.088 0.087 0.086 

D 20.58 2 1.04 2 1.52 22.02 22.53 
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For each value of s(, 71 eigenvalues were obtained which had converged to at least four 
decimal places. The behaviour of each eigenvalue with respect to increments As( = 0,001 
in ci, was studied by calculating the second differences A, defined by 

where i denotes the particular eigenvalue under investigation. Perturbation theory 
yields 

The values Ai  are shown as a function of the energy E ;  in figure 3. For energies less 
than about E = 16.0 % 0.74 D ,  all second differences are very small. 

For energies greater than E = 16.0, however, eigenvalues are found with correspond- 
ing Ai values orders of magnitude larger. These eigenvalues are evidently very sensitive 
to small changes A 2  in the perturbation. High order terms in the perturbation expansion 
become important for these eigenvalues. 

Thus two types of eigenvalue are distinguished by their behaviour under a slowly 
changing perturbation. 

From the results of Henon and Heiles (in particular see figure 7), the relative area 
x I  of the surfaces of section covered by unstable trajectories is given approximately as a 
function of the energy E ,  by 

M,(E)  = 0 E < 0.68 D 

E > 0.68 D. = 3.125(E/D) - 2.1 25 

! 
4.0 i 

0004 0008 0.012 0016 
A 

Figure 3. The second differences A as a function of the energy E .  (Since the eigenvalues are 
computed to four decimal places, the accuracy of the second differences, due to rounding 
errors, is f 0.0002.) 
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We can compare the integrals 

which are the total areas covered by unstable trajectories up to an energy E ,  with the 
quantities 

I E  

D i  
S(E)  = - 1 n,(Ei) ( A E i )  

which are calculated from the quantal energy spectrum. In this sum, we set n,(Ei) = 1 
if the eigenvalue E i  is very sensitive to the slight changes in the perturbation, and 
n,(Ei) = 0 otherwise. ( A E i )  is a mean separatioli between an eigenvalue Ei and its two 
neighbouring eigenvalues Ei- and Ei+ 

( A E i )  = g E i +  1 -Ei -  1). 

Figure 4 shows a plot of Z(E) as’a continuous curve and S ( E )  as a series of points. We 
see that qualitatively the points (quantal spectrum results) follow the shape of the curve 
(classical trajectory results). The two sets of results cannot hope to agree quantitatively 
since the sum S ( E )  corresponds to volumes of phase space while the integral is for areas. 
However, the energy at which the eigenvalues first become sensitive to the changing 
perturbation ( ~ 0 . 7 4  D) agrees well with the critical energy of Henon and Heiles 

Thus energy levels which are very sensitive to a slowly changing perturbation are 
identified as corresponding to the irregular unstable trajectories of Henon and Heiles. 

( ~ 0 . 6 8  D). 
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Figure 4. The integral curve I ( E )  = s” a,(E) d E  as a function of the energy E. The points 
correspond to the sum 
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4. Conclusions 

Eigenvalues of the Henon and Heiles nonintegrable Hamiltonian with energy less than 
a critical energy E' z 0.74 D were found to be insensitive to a slight change in the per- 
turbation. These eigenvalues belong to a regular spectrum. Above the critical energy, 
which is known to within a narrow band of energy, eigenvalues are found which are very 
sensitive to a small change in the perturbation. These eigenvalues belong to an irregular 
spectrum. 

Polyatomic molecules are examples of nonintegrable systems. The results presented 
above support the prediction of Percival(l973) that the vibrational energy spectrum of 
polyatomic molecules will show a regular progression which will terminate abruptly a t  
a maximum energy below the dissociation limit. Modern lasers should have a sufficient 
resolution to detect irregular spectra. 
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