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Vibrational quantization of polyatomic molecules
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Semiclassical methods based on Einstein—Brillouin—Keller quantization
and a classical variational principle are described. They are applied to model
potentials of up to three coordinates and promise to be effective for the de-
termination from potential surfaces of large numbers of vibrational energy
levels of suitable polyatomic molecules at energies intermediate between
equilibrium and dissociatior,

1. INTRODUCTION

With present-day laser technology it has become practicable to investigate
the higher vibrational levels of polyatomic molecules. There is no doubt that
lasers will be used to extend observations to more transitions at higher precision
and without the complications due to the rotational band structure [1]. It is
possible that transitions involving a significant fraction of the vibrational levels
of suitable triatomic molecules might be observed. For common triatomic
molecules without H atoms there are usually thousands of vibrational levels for
each electronic state.

For the low energy levels matrix methods and gquantal perturbation theory
have been effective in relating the levels obtained from observed spectra to trial
potentials [2]. But both of these methods require a basis set of wave functions

~and for high vibrational levels all but a small proportion of this basis will be
strongly coupled by anharmonic terms. The order of the matrices in the matrix
method will be formidably high, as will be the order of perturbation in the
perturbation method.

- The spectra of some diatomic molecules have already been observed for

~ energy levels from the ground level to dissociation, and semiclassical methods
based on the well-known Rydberg—Klein—-Rees method have been used very

~ effectively in relating the observations to potential energy curves through the

. Bohr-Sommerfeld quantization rule

1:%“ dg=(v+})h. (1.1)

~ Semiclassical methods are particularly useful for the higher levels, where an-
. harmonic terms are large.

‘ Semiclassical methods have been used in the study of collisions between
- atoms and diatomic molecules [3] and look very promising. It is worth in-

- vestigating the corresponding bound states of triatomic systems using related
. methods.
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The application of the methods is not easy but model examples given here
(8§ 5 and 6) suggest that they might be a useful complement to traditional
methods.

We make the following simplifying assumptions :

SA1 There are no significant deviations from the Born-Oppenheimer approxi-
mation.

SA2 There is a single potential energy surface 7 belonging to a single non-
degenerate electronic state.

SA3 V has only one minimum and no other stationary points.

SA4 All effects of rotation can be neglected : the angular momentum is zero.

None of these assumptions is absolutely necessary for the application of semi-
classical methods, but they avoid complications which divert attention from the
central features of the method. The assumptions can be removed later.

One assumption which 75 necessary for the application of the methods we
shall describe is

SA5 The spectrum is regular,

This is described elsewhere [4, 11] and also in §§ 2 and 4.

With these assumptions the problem is reduced to the study of the quantiza-
tion of systems with N degrees of freedom and a smooth potential function
which has a minimum and no other stationary points in the region of interest.

The properties of the classical motion for such a system are described in § 2,
where we introduce the ‘invariant toroids’. Section 3 contains a variational
principle for invariant toreids which is analogous to the variational principle
for the energy of bound quantal states [5].

In § 4 we describe the Einstein-Brillouin—Keller (E.B.K.) quantization rule
and show how it is related to invariant toroids. Eastes and Marcus [6] have
obtained toroids for quantization by explicit numerical integration of trajectories.
This can be time-consuming and becomes very difficult when the number of
degrees of freedom exceeds two.

A non-linear equation for the invariant toroids is obtained from the variational
principle in § 4 and iteration schemes are described for the solution of this
equation. The subsequent determination of energy levels is straightforward.

Section 5 contains numerical examples in which it is shown that the iteration
schemes of §4 can provide accurate toroids with comparatively little effort.
Section 6 gives examples of the use of the metheds of §4 to obtain analytic
expressions for the energy levels of a model one-dimensional and of a two-
dimensional system. "The results are compared, where possible, with quantal
perturbation theory and matrix methods.

2. CLASSICAL MOTION

Consider the classical vibration of a diatomic molecule with the assumptions
SA1-5A4. For coordinate ¢ of relative motion of the nuclei and conjugate
momentum p the hamiltonian is H(q, p). For a given energy E between the
equilibrium and dissociation energies the equation

H(g, p)=E (1)
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defines p as a two-valued function of ¢, which may be represented as a graph
in the two-dimensional phase space of points X =(g, p) as illustrated in figure 1.
This graph is the phase-space trajectory and occupies the entire one-dimensional
energy shell of points in phase space which satisfy equation (1).

C

—

Figure 1. Phase-space trajectory for vibration of diatomic molecule,

For a polyatomic molecule of NV degrees of freedom the classical motion near
equilibrium is close to that of N independent harmonic oscillators in normal
coordinates ¢, with conjugate momenta p,. and characteristic angular frequencies

w=2r[Ty, (2)

where T is a characteristic period.

Temporarily neglect all anharmonic coupling and consider only two degrees
of freedom, such as the stretch modes ¢, ¢, of a linear triatomic molecule.
The phase space of points

X=(9, P)=(q; g2 P1, P2) 3)
is four-dimensional. For energy E the energy shell defined by the equation
H(q,p)=E ()

is three-dimensional. Energy is conserved for each mode separately, so the
trajectory in phase space is confined to a two-dimensional region Z. This
region is invariant in the sense that if the molecule starts with its coordinates and
momenta {q, p) in X, then they remain in X for all time. The shape of X
resembles a doughnut or torus (figure 2) and it will be named an invariant toroid,
whatever the number N of degrees of freedom. Table 1 summarizes the di-
mensionality of various regions for two and for /V degrees of freedom.

The semiclassical quantization of systems of N degrees of freedom [7]
requires the theory of action-angle variables [8]. 'The classical action variable

1
Ik=—2_ﬂ_"§Pk dg;, (3)

 is conjugate to the angle variable 8, which lies in the range
—m< b, < (6)

12
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Figure 2. Phase space trajectory and invariant toroid for stretching of linear triatomic
molecule. %, and ¥, are curves for the definition of action integrals I, and J,.

Dimension for two Dimension for N

Region degrees of freedom degrees of freedom
Phase space 4 2N
Energy shell 3 2N -1
Invariant toroid 2 N
Trajectory 1 1

Table 1, Dimensions for two and for N degrees of freedom.

By definition al! functions are periodic of period 27 in 8,. Where notation of
other authors differs from ours, the variables are related by the equations

#
Jo=2nl, w=—. (7
2

For the vibrations of a diatomic molecule, for each value of the action variable
1, the dependence of the point X =(g, p) in phase space on the angle variable 8,

Xy(0)=[gz(0), p:(8)), (8)

provides a parametric definition of the trajectory or energy shell, and each in
this case is equivalent to the * invariant toroid * X in one dimension.

In N dimensions a toroid Z is defined parametrically by the functional
dependence of a point X =[q, p] in phase space on the vector angle variable
6=(8,, 8,, ..., 8y), that is

X3(8) =[qx(9), p=(0)]

=[‘112(81v 923 sy BN)r QEI(BD 92: Ty 9,\’)' QNZ(BI! 82’ ey 8!\'))
> 8 A g Y & A A a 0y s O A a 11 Oy

|
c
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It is not essential to consider the time explicitly, but it helps to make the
connection with the more familiar theory of Hamilton’s equations by using the
linear relations

Bksz\z+ 8,'- (10)

between the time ¢ on a given classical trajectory which lies in the toroid and the
angle variable #;. In this equation w,, is a characteristic angular frequency of
the motion and §; is a phase shift that determines the location of a particular
trajectory in the toroid. It follows from equation (10) that the total time deriva-
tive along a trajectory is given by

d N 0
—_—— — 11
dt k§1 “k Eﬂk ( )

and this is used in the next section to obtain Hamilton’s equations. |

Returning to the linear triatomic molecule, suppose now that the amplitude
of the stretching is so large that there is significant anharmonic coupling between
the stretch modes. The total energy E is still conserved but the energy in each
vibrational mode is not. In the terminology of classical dynamics the system
is ‘ non-integrable "

For the two degrees of freedom of the stretch modes it is not evident whether
a given trajectory in phase space will still be confined to a two-dimensional
toroid or whether it will wander throughout the three-dimensional energy shell.

It was proved by Kolmogorov, Arnol’d and Moser (K.A.M., [9]) that there
are regions of phase space, named the regular regions, for which the trajectories
are confined to invariant toroids, and it has been amply demonstrated by
numerical experiment [10] on model potentials that crudely resemble those of
triatomic molecules, that the regular regions occupy a significant fraction of
the phase space below a typical threshold energy. The remaining irregular
regions and the properties of the corresponding energy levels are discussed
elsewhere [4, 11]; only the regular regions are considered here.

The properties of the invariant toroids for non-integrable systems are similar
to those of separable systems, and they can still be defined parametrically by
equation (9). But the definition of the values of the action variables I, for an
invariant toroid can no longer take the form of equation (5). This point is
crucial to the problem of quantization. In their original form of the quantization
rule, Sommerfeld and Wilsen used equation (5) to define the action integrals.
However, the definition depends on the choice of coordinates. Schwarzschild
and Epstein [12] proposed a meodification which was still not invariant under
the canonical transformations of classical mechanics.

It was left to Einstein [13] to find a definition which does not require a
particular choice of canonical coordinates, His definition is equivalent to

1
IIc:% § p.dq

Er

! > 12
=“2"T';$k 1§1 2 dqy (12)
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and can be used for invariant toroids whether the hamiltonian is separable or not.
The %, are independent curves on the toroid which cannot be deformed con-
tinuously into one another, as illustrated for two dimensions in figure 2.  Einstein
shows that the definition is independent of continucus transformations on the
toroid, by analogy with the contours of complex integration theory.

With this definition each toroid is labelled by N action variables, (I,, I,, ...,
I} and by conservation of energy every point on the toroid has the same value E
for the hamiltonian function H{q, p). Within the regular region the toroids
therefore define a function

E(l,, 1, ..., 1\)=E(I). (13)

This energy function is all that is needed to determine the regular semiclassical
energy spectrum.

3. VARIATIONAL PRINCIPLE

Quantum mechanics is more familiar these days than is classical mechanics.
It is well known that in quantum mechanics the variational principle for the
energy can be used to derive perturbation expansions for the bound state wave
functions and to obtain expressions for energy levels having errors which are of
higher order than the errors in the wave functions.

An invariant toroid is the classical analogue of a bound state wave function
and can be used to approximate both wave functions and energy levels. The
variational principle for the energy of an invariant toroid is analogous to the
variational principle for the energy of a wave function ; this and further analogies
are presented in table 2, which can be used as a guide to the classical theories.

Trkal [14] proposed a variational principle for action integrals without
apparently reaiizing that the variations did not require to be constrained to
solutions of Hamilton’s equations. Van Vleck [15] realized that the variations
need not be so constrained and proposed a variational principle which is the
same as that presented here for one dimension. However, in many dimensions
time was used instead of the angle variables 6, and the variations were implicitly
restricted by an inadequate definition of action integral, which is ambiguous for
approximate toroids. His principle was, therefore, incomplete.

We use a variational principle for invariant toroids [5] which is free from
these restrictions,

To formulate the variational principle, an integral of a function f(8) over
the entire space of the angle variables is defined by

§ dr ()= [ d0, § do, ... § d6f(By By ..., By) (14)

and a normalized integral by
§" drof(8)=(2m) =" § dr,f(8). (13)

When a toroid 2 (which need no? be invariant) is defined parametrically by
a phase-space function

X(8)=[qx(6), P=(6)] (16)
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Quantal

Classical

1. Bound state wave function
$(q)

2. Variational principle for mean energy for

4

3. o [H |4

4, Fixed normalization integral
A= |

5. Energy

E= (g H| Kby
6. Dynamical operator
A

7. Schriédinger equation for bound states
(E—H):=0

8. Quantal perturbation theory for
hamiltonian operator

H=H+bV

9. Unperturbed wave function
l}bo

10. Unperturbed energy
Eﬂ

11. No degeneracy

Invariant toroid
X = [qtor(e), Ptor(e)]

Variational principle for mean energy on
X(9)
§ droH(Q(®), p(8)) = (H>
Fixed action integrals
Ie=¢' dvep(8) . #q(8)/78,,
k=1,2, .., N

Angular frequencies

wrp=¢{HYely, k=1,2, ... N

Function of coordinates and momenta

Alq, p)
(sometimes called a ‘ phase function ”)

Angle form of Hamilton’s equations

¢ (H
2 wr — q(8)=— (q(8), p(9))
] Oy °p

s cH
3w — P(8)= ——— (q(8), p(6))
P &0 cq

Classical perturbation theory for
hamiltonian function

H(q, p}=H%q, p)+56,V(q. P)
{normally ¥’ is a function of q alone)

Unperturbed toroid
X°(9)
Unperturbed frequency vector
wﬂ
No non-trivial small integers sy such that
% Riwp=0

Table 2.

Analogies between quantal and classical mechanics of systems with N degrees of
freedom.

the mean value of the energy on the toroid is

(Ey>;=$ dryH(qu(8), ps(8))

(17)

and the mean of the kth action integral, defined for an arbitrary toroid, is

I(S)=§' dreps(0) . 2,(8)/26);.

(18)

This last definition is required because Einstein’s definition in terms of § p . dq

'

along curves around the toroid is no longer valid for arbitrary toroids: it

depends on the curve.
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For simplicity we now drop the arguments £ and propose that the mean
energy (17) should be stationary subject to the action integrals (18) remaining
fixed ; thatis

Ad = (Ax)?, (19)
where
®=§ dry (H(a(0) 6O %, w0, ) @)
for arbitrary variations
AX(6)=[Aq(6), Ap(8)]. (21)

The w, are nere just Lagrange multipliers.
By the usual variational methods, equating coefficients of Aq, Ap to zero
we obtain [3] the equations

‘k; w,8q/30, = eH|op, (22 a)
gwkap/aaﬁ — ¢Hjoq, (22 b)
where
i, g ¢ b ¢ ¢ ¢ ¢
T(a 7 7> a—p(???) ()

These equations are partial differential equations for a toroid. They will
be called the angle Hamilton’s equations. If the Lagrange multipliers w,, are
identified with angular frequencies and the relation (11) for d/dt is used, then
the equations reduce to the more usual Hamilton equations for a system on a
trajectory which remains in the toroid. 'Thus the trajectory of any system
with hamiltonian function H(q, p) which starts at a point (q, p) on the toroid
remains on the toroid for all time. It is in this sense that the toroid is invariant,

In obtaining the variational principle, the corresponding quantal theory has
been used as a guide, but there are some essential differences between the two
theories. The classical theory 1s non-linear ; this leads to difficulties when it
comes to applying the theory. In particular, one is confronted with a problem
which is known in celestial mechanics as the problem of small divisors and which
is related to the problem of Fermi resonances in molecules. 'The non-linearity
also leads to the irregular regions, where no toroids appear to exist, so that they
cannot be found using a variational or any other method. It is unlikely that any
semiclassical theory of the irregular spectrum exists except in a statistical sense,
and we do not consider the irregular regions further.

4. QUANTIZATION AND METHODS

Einstein's 1917 paper [13], in which the invariant definition of 1, was intro-
duced, treated the problem of quantization in the old quantum theory. The
action integrals (12) were equated to integer multiples of .

Since 1925, molecular theory has been based on quantum mechanics, and
the ‘old ’ quantum theory reinterpreted as asymptotic quantum mechanics in
the limit # -0 and as a part of semiclassical mechanics. Brillouin [16] sketched
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the semiclassical mechanics of systems with many degrees of freedom in 1926,
and in 1958 Keller showed that corrections to the Einstein theory were required
at caustics [17]. 'The whole Einstein-Brillouin-Keller (E.B.K.) theory of
quantization was made rigorous and expressed in terms of phase space and
invariant toroids by Maslov [18]. In the previous section we have used this
phase-space picture consistently, even though the results were expressed by
other authors in configuration space. 'The E.B.K. theory is valid only in the
regular regions, though this has not always been stated.

The E.B.K. theory of quantization applied to the main regular region for
the vibration of polyatomic molecules gives the quantization rule

Li=(we+dh (k=1,2,..,N; 0,=0,1,2,..), (24)

where [, is the invariant action integral as defined by Einstein and as it appears
in the variational principle for invariant toroids, and N is the number of degrees
of freedom.

The regular energy levels E,, .,
(24) into the energy function (13)

E-v;,v:, s vN=E((wl+%)ﬁ! (7)2+%)h, (23 (vl’\""%)h) (Z?k=0, 1,2, ) (25)

It is assumed in this formula that the toroids of interest can be obtained by
continuous deformation from those in the neighbourhood of equilibrium.
This is normally true, and the exceptions would take us too far from our main
theme. Thus the semiclassical energy levels can be obtained directly from the
energy function of the action variables.

The variational principle for invariant toroids can be used to derive a number
of different methods of quantization based on equation (25). We use the principle
in two distinct ways :

«~ are found by substituting equation

1. To obtain equations for approximate toroids.
2. To derive relatively accurate energy functions from approximate toroids.

We consider two methods, both based on Fourier expansions of the co-
ordinates and momenta which are truncated where necessary for an approxima-
tion. Consider for simplicity two stretch modes of a linear triatomic molecule,
with canonical coordinates and momenta (r, p)=(x, ¥, p,, p,) and units chosen
such that the hamiltonian has the form

H{r, p)=1(p,* + p,"}+ V(% ¥)

=3P+ p,°) + 227+ 1 B) + b V2 (x, ). (26)

If the coordinates and momenta are expanded in Fourier series
r(8y, 8)= X vy, 5, expi(s;0y+5,0,), (27 a)
P(fy, o) = X (51, + 5p00)Ty, 4, €XP (510 +556,), (27 b)

the classical functional @ defined in equation (20) becomes

b=} Z (31‘”1+52w2)2(x51. 6%y, —s2 T Puy, 0251, ~s:)
+§' droV{ Z Foi, 5, €XP (5101 + 5565)) e [y —wy 1. (28)

$1p 52
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The coefficients of the derivatives with respect to x
zero, so that

and y_;,  _,, are all

—&1, —%2

(5100 + 8000)%r 0= —F o (29)
where F,, . are the Fourier components of the force
F(r)=—VI(r), (30)
F., ..=¢% drlexp —i(s;0, +5,8,)]F(x(8), 3(8)). (31)
The non-linear equations (29) may be written as
[A—(reon + 530} ]3| = Frg,, .i‘zanh!}
(32)
I = (syomy +$002)°) ¥,y = Py, ™™
Here F,, 2" are the Fourier components of the anharmonic force
Feob(r)y= — 4, VI anb(r), (33)

Equation (32) can be used as a basis for an iteration scheme which provides
toroids without the necessity of determining action integrals. Later, when we
wish to obtain expressions for energy levels, the iteration scheme will be modified.
We continue to work with two degrees of freedom but the method generalizes
directly to three or more degrees of freedom.

Start with a solution of the harmonic problem without F**».  For the itera-
tion assume that the fundamental components of x and y are fixed :

X1, n:x1,o=Aw}

yﬂ, 1=y0, —1:Ay1

(34)

and assume that the solution is real. Then use equations (32} for these compo-
nents to obtain corrected frequencies at each step of the iteration as follows

anh

w12 =X FxlAO ,
’ (35)

F anh

wyl=p— ————?"01:11 .

¥

At each step use the remaining equations to obtain the Fourier components of
position from those of the anharmonic force :

X

H1, 31=F.r.4| R s;ﬂnh/[)‘ - (slwl +32w2)2] (slr 52) 7&( * 1’ 0)’
(36}

Vervur = "M — (Sywy +8505)° ] 5y, 82)#(0, £ 1).

Obtain the force components F, 25! at each step from the position components
r,, ., of the previous step through the sequence

re s, —1(0y, ;) ~Feni(g, 8,) >F, , ant

N, 82 &1, 82

Examples using this iteration scheme are given in § 5.
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To calculate energy functions for toroids we describe an iteration scheme
which is similar to the one above. It will be used in § 6 to obtain energy levels
for some model systems. Within the new scheme it will be necessary to calculate
the action integrals [,, f,. TFurthermore, these quantities are held fixed through-
out the iteration whereas the fundamental components of x and y are not,

Start with the harmonic solution (34). At each step of the iteration use
equations (35) and {36) to obtain Fourter components of position

Xor, o G0 82) #(E£ L, 0)5 3, (50, 8) #(0, £ 1),

These Fourier components, together with the condition of holding the action
mntegrals fixed, are sufficient to determine the corrected fundamental components
of the position

X:11,0 Yo, 21
Use equation (17) to obtain a mean energy as a function of 4,, 4, :
(B =§ dryH(x(8), (8), $.(8), p,(8))
=§ dr(3(p,H0)+ p,%(8)) + H(Ax*(6) + 1£y*(8)) + b, """ (x(8), 1(9)), (37)
and equations (18) to obtain action integrals as functions of A, 4, :

cx(0 (6
1§y (20 20 00 20Y) .20 (38)

Find 4,, A, as functions of I,, I, (‘ reversion of series’) and on substituting
into equation (37) for the mean energy, obtain an energy function E(1;, 1,).

It should be noticed that in obtaining the energy function E{[,, I,} we use
the variational principle twice, once for obtaining the equations (35), (36) to
iterate, and once during the iteration to evaluate the mean energy (37).

5. NUMERICAL INTEGRATION AND TRAJECTORIES

In this method, which uses the first iteration scheme of §4, the Fourier
coefficients at each stage were obtained numerically. The iteration was con-
sidered to be successfully completed when the mean square differences of
successive forces or positions was less than some tolerable error TOL. Tra-
jectories r(8(z)) obtained by the iteration procedure, known as the ‘angle
solution * were compared with step-by-step integration of Newton’s equations
of motion, the * Newton solutions ’.

For the angle solutions real Fourier analysis was used in practice. For
two degrees of freedom each doubly periodic function f(#,, 8,) of the angle
variables was approximated by a finite Fourier sum of {2M + 1)? terms, M being
the order of the highest component in each dimension. The functions f were
tabulated where necessary on a (2M +1) % (23 + 1) mesh.

The Newton solutions were obtained with a step size chosen to keep the
magnitude of the error at each step well below a maximum of 10-3.

For two and three degrees of freedom the potentials had the forms

Vo= (M4 py? +byaty?), (39)
V= (AP +py?+ va®+ by y%e? 4 by + byx?y?). (40)
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The coefficients A, u, v were chosen to be of order unity, ensuring that in the |
absence of the anharmonic terms the characteristic periods would be of order 27,
The sizes of the coupling coefficients were limited by the requirements of con-
vergence, more severe for three than for two dimensions, and the ratios of Al
@12 and v1/2 were chosen as they were for the same reason. The phase shifts §
were chosen zero in every case, as a trivial change in the origin of time effectively |
covers a range of 3.

At a few instants in time, given in table 3 for different cases, the angle and :
Newton solutions were tabulated and compared. Results are presented in °
table 4 for two degrees of freedom and in table 5 for three degrees of freedom.
The values of €(100) and «(1000) approximate the maximum of the magnitude
of the difference between the tabulated angle and Newton solutions over about
100 and 1000 units of time respectively, that is about 14 or 140 characteristic
periods of uncoupled motion. '

Tabulation number Times T of tabulation and of comparison
1 0(0-25)10(2-5)100
2 0(0-2)10(2-01100¢20)1000{0-2)1004
3 G(0-4)2; 10(0-4)12; 100(0-4)102; 1000(0-4)1003-2

Table 3. Tabulation timnes.

Required
number of Tabulation

m b, Az Ay log,(TOL) iterations number  log,[€(100)] log[e(l
07071 0-2 1-0 05 -12 5 1 —65 :
0-7071 0-3 10 0-5 -12 7 1 —& 1
0-3331 05 10 05 -12 7 1 -6 ;
0-7071 05 10 05 —16 10 1 -7 ;
0-7071 0-5 10 0-5 —16 10 2 -7 -57 1
6-7071 05 1-0 05 —14 9 2 -7 -
0-7071 0-5 09 05 —16 9 2 —75 -63
0-7071 05 08 05 —16 8 2 —-77 —63
0-7071 03 01 0-05 —~16 4 1 -9

Table 4. Comparison of angle and Newton solutions for two degrees of freedom. A=1 and M;-q
throughout.

In every case the angle and Newton solutions were in agreement to within
10-% units of distance. This shows that even this crude numerical iteration
procedure provides toroids which are excellent approximations to invariant
toroids. In practice the time of computation for the iteration was less than that
required for the numerical integration of the trajectories, so the method is very
promising for the calculation of the energy function E(I) and thus for semi-
classical quantization.

i
i
|
|
ra

i
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6. ANALYTIC PERTURBATION—VARIATION AND ENERGY LEVELS

In this section the feasibility of using the variational principle is approached
from a different direction, In the iteration equations (35) to (38) the an-
harmonic term is treated as a perturbation with parameter &,, and for simple
one-dimensional and two-dimensional potentials

Vi=1xx%4 b4, (41)

Vy=3(Ax? + uy?) + bya?y?, (42)

a perturbation series for the coordinates is obtained to second order in b, for I,
and to first order in b, for V,. By using the stationary property of the func-
tional @ the resulting energy functions E(I} are obtained to fifth order in b,
for ¥, and to third order in &, for V,.

For potential V, with A=1 we find

2(0)=A(1-3b,A4.2+35°0,2A %) exp 16+ 15, 4,31 - 32b, A.%) exp 38
+ }86,%A4,% exp 5/8 4+ complex conjugate (c.c.)  (43)

and

E(I)=1I+3b 1% —'Zb2I3 +- 333b,3]% — 10850} 3]5 4 183125} 5 6, (44) -

An approximate expression for the energy levels E, supported by the potential
is given by

E.=E((v+3)h) (v=0,1,2, ..). (45)

We can compare the result (44) with the energy function obtained by applying
quantal perturbation theory (Q.P.T.) to the potential I/,. To third order in b,
we find

ECPTA( Ny =4 30,(12+ 1) b X3+ WA 1) + 270031+ 883 12 + %), (46)
where for purposes of comparison we have here put #=1 and
I=(v+1}). (47)

Similarly, for the two-dimensional potential ¥, the coordinates x(8), y(6)
to first order in A, are

(0, 0,)=A (1 —b.A}?) exp if + 1b, exp #(8, + 246,)

1,’2( 1*2+1)

A,A2
by ———F—expi(f,—28,)+c.c. (48)

+
Pt (i —1)

RO

2 2
¥(8,, 8,)=A4, l—blA—“" exp 10, + 1b; Iil—Aexp (260, +6,)
P Py

A.24

— 1, (#”2—_’1) exp (26, —6,)+cc.  (49)
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and the energy function E(I) to third order in 4, is
b1 (Bu—-2) {(2p—3)
I, L)=L+lpter+ 2 pe(2p, ——— 7y [ ]2
E( 1 I2) ]+ ot + IM];g 1 ( 1 24‘“3!2(#_1)—}"]] 4 4}1’(#_1)
(5p* —5p+2) (1*=3p+1) (5 —3Sp+2u%)
3 3 2752 3
+b, (Il I, e 1) + 3121, 1) + 1,1, i 1) ) (50)

Approximate energy levels E, are obtained from (50) by using the relation

E

i,y

Lo IR

=E((vy+ 1A, (e +3)8) (B=1,2; v,=0,1,2, ...) (51)

Once again we can compare the result (50) with the energy function obtained
by quantal perturbation theory. 'T'o second order in b, we find

3 9 b I I (3#72)
EQr (I, LY=1,+ 12#1‘-%—;%{22*1312 (11212 m

(2u—3) 31, 31, )
+ 112 — + , 52
Py R TSRS TR ey )

where
Li=(v,+3} (k=1,2; ©.=0,1,2, ...). (53)

The above analysis shows that for the potentials I, V', defined in equations
(41), (42) respectively, the perturbation-variation iteration scheme of §4
provides energy functions as power series in the expansion parameter b,. Each
term of the series is given exactly by the dominant contribution to the cor-
responding term of the quantal perturbation series.

Exact energy Semiclassical Semiclassical
levels levels +2b;
144-89 145-06 144-90
434-01 434-18 43402
721-80 721-97 721-81

1008-24 1008-41 100825
1293-31 1293-48 1293-32
1576-99 157717 157700
1859-26 1859-44 1859-28
214010 2140-29 2140-13
2419-50 2419-69 2419:52
2697-42 2697-61 269745
2973-84 297404 297388
3248.75 3248-95 3248-79
352211 3522-32 352216
3793:90 3794-11 379394
406409 4064-31 4064-14
4332-65 4332:89 4332:73
4599-56 4599-80 4599-64
4864-78 4865-03 4864-86

. Table 6. Exact and semiclassical energy levels of the one-dimensional hamiltonian,
H=lp2+ a2 +bx?; A=1, b;= —0-0015; dissociation energy=12102-5 cm 1.
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Exact energy Semiclassical
levels cnergy levels
cm™1 cm!
1203-29 120329
2198:35 219835
261177 2611-78
3193-39 3193-38
3600-78 3600-78
4020-23 4020-26
4188-40 4188-38
4589-70 4589-70
5003-16 5003-18
5183-39 518336
5428-70 5428-73
557854 5578-54
5985-96 5985-98

6178:35 617831
6405-53 6405-56
6567-30 6567-29
6837-15 6837-19
6968-63 6968-63
7173-27 717322
738219 738220
755601 755596
7807-87 7807-90
7951-15 7951-15
8168-15 8168-10
8245-39 8245-64
8358-65 8358-66
8544-56 854453
8778-52 8778-38
§933-52 8933-52
9163-02 916296
921016 9210-21
933491 933492
9533-03 9533-01
9654-02 9654-08
9748-58 974862
9915-74 9915-74
10157-83 1015778
10174-46 10174-51
10310-96 10310-98
10521-42 10521-40
10612-43 10612:49
10718-58 10718-61
10897-80 10897-80
11062-43 11062-50
1113846 11138-51
1115263 11152-56
11286-82 11286-83

Table 7. Exact and semiclassical energy levels of the two-dimensional hamiltonian.

H=3(p"+p,%) + A+ py®) + bix®y?

energy = 358817-9 cm™1,

A=1, p=05, b= -0003;

dissociation
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To investigate the accuracy of the energy levels we compare the ‘ exact’
quantal energy levels supported by ¥, and ¥, with those obtained from the
expressions (45) and (51).

Exact energy levels are found by diagonalizing the relevant hamiltonian
matrices. For this purpose matrix elements of the hamiltonians with potentials
V1 and V, are calculated using harmonic oscillator wave functions as a basis.

For the one-dimensional potential V), the parameter b, was chosen so that
the number of bound states was approximately the number of vibrational energy
levels of iodine, Similarly for V,, u and b, were chosen so that the number of
bound states was typical of the stretch modes of a linear triatomic molecule,
chosen to be carbon dioxide.

For each diagonalization a sufficient number of basis functions was chosen
to ensure convergence of any tabulated energy levels to 0-01 ecm=! for the worst
case.

Table 6 compares the lowest 18 exact energy levels of ¥, with the cor-
responding semiclassical energy levels obtained by the iteration procedure in
equations (44), (45). A similar comparison is shown in table 7 for the lowest
47 energy levels of V,.

For the two-dimensional system the agreement between exact and semi-
classical is better than for the one-dimensional system. This is a consequence
of the fact that for ¥, the quantal perturbation series (52) and the classical
perturbation series (50) are identical through first order in 4,, whereas for ¥,
there is a difference 35,/8, between the quantal and classical first order energies.
If we regard 35,/8 as a first-order quantal correction to the semiclassical energy
levels of I, and add it to (44) then the results are much improved (table 6).

7. CONCLUSIONS

The variational principle for invariant toroids and the E.B.K. quantization
rule provide a useful range of methods for obtaining energy levels from potential
surfaces.

The numerical iteration scheme of § 5 shows that toroids can be found for
two and three degrees of freedom which are so accurate that it is difficult to
determine any errors in them by stepwise integration of trajectories. The
parametrization in terms of angle variables allows direct determination of action
variables I, which is difficult using direct numerical integration of trajectories.

The analytic perturbation-variation method of § 6 is easier in practice than
quantal perturbation theory for a given order of perturbation, as it does not
require the extensive summation procedures of the latter. Unlike the analogous
quantal case, the stationary principle provides a powerful practical technique for
obtaining higher order energy levels from lower order invariant toroids. The
evaluation of the energy function E(I) and the substitution of the quantization
conditions I, = (v, + 4)% enables large numbers of energy levels to be obtained
together,

The method is not so accurate as quantal methods for low quantum numbers
where the semiclassical expansion is not so good. It is straightforward to
combine the method with low order quantal perturbation theory which may
lead to improved results. 'Thus it is complementary to the usual quantal tech-
nigues,

M.P. 18





