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Description of Nonlinear Internal Wave Interactions Using Langevin Methods
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A comparison is made between several methods for calculating energy transport among the linear nor-
mal modes of the internal wave field. Two Langevin techniques are presented. The first is based on the
fluctuation-dissipation theorem and provides a relaxation rate »- and a transport equation. The second
method is an application of the Krylov-Bogoliubov-Mitropalsky perturbation theory and provides a
Langevin rate constant », calculated here only to lowest order. The two formulations are closely related
to the radiative transfer (Boltzmann) equation, whose rate is the difference between v and »p. Computa-
tions confirm the conclusion of McComas and Bretherton that the GM-76 spectrum is approximately a
steady state spectrum for three-wave interactions except for frequencies near the inertial frequency and at
the lowest vertical modenumbers. The sensitivity of » and »; to spectral form is also discussed. Simple
analytic expressions for the rates are derived for the induced diffusion, elastic scattering, and parametric
subharmonic instability mechanisms. The first of these expressions provides a useful fit to the full com-
putation over much of the spectrum. Finally, net energy flow in the nonequilibrium portion of the GM-

76 spectrum is discussed.

1. INTRODUCTION

Nonlinear energy transfer mechanisms within the oceanic
internal wave field have been studied by Olbers [1976] and
McComas and Bretherton {1977). These authors used a radiat-
ive transfer equation [Hasselmann, 1966, 1967] for their com-
putations. The radiative transfer (or Boltzmann) equation
governs the evolution of wave action spectra ensemble aver-
aged over many realizations of the wave field. Derivation of
this equation from the fluid equations requires several ap-
proximations: (a) nonlinearities are assumed ‘weak,” and only
lowest-order (quadratic for the case of internal waves) non-
linear terms are retained in the equations of motion; (b) two-
time perturbation methods are used; the ‘fast time’ corre-
sponds to linear wave periods and the ‘slow time’ to nonlinear
interaction time scales; (c) spatial homogeneity in any hori-
zontal plane is assumed. This allows simplification of second
moments of wave amplitudes; and (d) a closure approxima-
tion is made by the discard of fourth and higher-order cumu-
lants.

In the present study we compare several different tech-
niques for calculating energy transport within the internal
wave field. The dynamical equations (Meiss et al, [1979]
henceforth referred to as paper 1) are derived using approxi-
mation (a) and describe nonlinear interaction of the linear
normal modes of the wave field. Here we use the Garrett-
Munk exponential profile for the Viisili frequency and the
WKB approximation to calculate the vertical modefunctions.
Our modal picture contrasts with the work of Olbers [1976]
and McComas and Bretherton [1977], who used a formulation
based on progressive waves. The relation between the two de-
scriptions is outlined in Appendix A. Two Langevin equation
techniques are developed in this paper to study the dynamics
of the system derived in paper 1 (Langevin methods have
been used by Holloway and Hendershott [1977] to discuss Ros-
sby waves).

The first Langevin method is based on the fluctuation-dis-
sipation theorem [Lax, 1960, 1966]. This method provides re-
laxation rates and a transport equation and depends rather
littie on dynamics. It assumes linear relaxation to a ‘known
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equilibrium’ state and also requires approximations (b), (c),
and (d).

To obtain the second form of the Langevin equation, we
use approximation (b) in the form of the Krylov-Bogoliubov-
Mitropolsky perturbation method, which yields directly an
equation of the Langevin form [Bogoliubov and Mitropolsky,
1961]. Approximation (d) is not required to calculate the
Langevin rate constant with this procedure.

We shall show in section 3 that the two Langevin formula-
tions are closely related to the radiative transfer equation. For
fluctuations near a steady state the two formulations are in
agreement. In this case the transport equation obtained from
the Langevin equation is identical in form with that used by
Olbers [1976} and by McComas and Bretherton [1977].

The Langevin methods lead to a decay rate »(k) for the
autocorrelation of the amplitude for a linear internal wave la-
beled as k.’ When calculated using the fluctuation-dissipation
theorem, we call this v.(k). The value obtained from per~
turbation theory is written as »y(k). The radiative transfer
equation used by Olbers [1976] and by McComas and Brether-
ton {1977] for the action density (J,} can be written in the
form

d
) = 2va(k){Ji)

The Boltzmann rate is shown to be related to the Langevin
rates by

v(k) = ve (k) — vp (k)

It is convenient to think of v, as representing the rate of en-
ergy input to mode k from the ‘noise field’ of the wave system
and to think of v, as describing a rate of energy loss from
mode k.

McComas [1978] reported numerical experiments in which
he introduced small distortions in the GM-76 spectrum and
computed the relaxation to ‘equilibrium.” We give an analytic
description of this in section 3, observing that the Langevin
rate vp(k) determines the rate of return to equilibrium.

Numerical calculations of » and », for a set of Garrett-
Maunk related spectra (with GM-76 as our reference standard)
are presented in section 5. We shall see that for the GM-76
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spectrum, except for frequencies near the inertial frequency
and at the lowest vertical mode numberg, |7, is from 1-3 or-
ders of magnitude smaller than », (or v5). We thus find precise
numerical confirmation of the conclusion of McComas and
Bretherton [1977] (who calculate only »;) that GM-76 is ap-
proximately a steady state in this region. Not surprisingly, in
the equilibrium region where »; is a small difference between
two much larger quantities, the values of »; are rather sensi-
tive to spectral shape.

McComas and Bretherton [1977] describe three limiting
mechanisms for energy transfer. They call these induced dif-
fusion, elastic scattering, and parametric subharmonic insta-
bility. In section 6 we show that GM-76 represents a steady
state except at the lowest frequencies and lowest vertical mode
numbers, with respect to both induced diffusion and elastic
scattering. (For the case of induced diffusion this was noted by
McComas and Bretherton [1977} and was implied more gener-
ally from their numerical calculations). We also present
simple analytic expressions for »- and », for each of the three
mechanisms. For frequencies greater than 3 times the inertial
frequency the analytic expressions obtained from induced dif-
fusion for both »; and », agree well with the numerically cal-
culated values for these quantities. The elastic scattering con-
tribution is an order of magnitude smaller. For frequencies
less than about twice the inertial frequency our approximate
expression for the parametric subharmonic instability rate ac-
counts for a significant fraction of the total rate.

Net energy flow in the nonequilibrium portion of the GM-
76 spectrum is discussed in section 7. Our conclusions are gen-
erally consistent with those of Olbers [1976] and of McComas
and Bretherton [1977] that energy is transferred from the low
vertical mode number regime into that of high vertical mode
numbers and near inertial frequencies. Since net energy flow
is determined by »,, the details depend relatively sensitively
on the assumed spectrum.

The Langevin rate constants discussed here govern relaxa-
tion processes in the wave field and also immediately yield
values for the more frequently calculated Boltzmann constant
vp. The simple analytic approximations for these rate con-
stants given in this paper should be adequate for applications
to internal wave transport processes.

2. THE DYNAMICAL MODEL

A general description of internal wave phenomena and the-
ory is given by Phillips [1977]. The detailed description of the
specific dynamical model used here is given in paper 1. A rec-
tangular coordinate system is chosen with the x-y plane tan-
gent (locally) to the ocean surface. The bottom is assumed
horizontal at z = —H. The Garrett-Munk exponential Viisili
profile is used in this paper:

N(z) = N, exp (z/B) ¢y
Dimensional quantities are N, = 5.2 (10)~* rad/s, B = 1.2 km,
and the surface fluid density p, = p(0). The coriolis frequency
is assumed vertical with magnitude

f=173(10)rad/s = 0014 N, 2)

corresponding to 30° latitude. Vectors, x = (x, »), are two-di-
mensional in the horizontal plane.

The vertical displacement of a Lagrangian fluid element
was written in paper | as
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&3(xr 2, t) = Re [Y(x’ Z, t)]

Y%, z, ) = iNg(B)? 3 ¥ "'“;c(‘) W@  (3)

a=1 k
Equation (3) is a Fourier expansion in an ocean of rectangular
area Y, in terms of horizontal wave numbers k. The linear
vertical mode functions, W,(z), satisfy the eigenvalue equa-
tion

df d

4 No— w,2(K)
|2

Wk,,] + ka[ 2(k) 72 ]Wka =0

wa(k) >0

Wia(0) = Wio(—H) =0 @

Here w,(k) is the angular frequency of a linear internal wave
with integer vertical modenumber a.

The amplitudes a,, are dimensionless wave slope variables
and satisfy (paper 1, equation (2.23))

dy + 0,0, = Y, [SesrwGn8*an + 8y uGintara,]  (5)
Lm

Here we have used abbreviated labels, writing &, /, m for (k,
a), (1, B), and (m, y), respectively. Explicit expressions for the
‘G’ coupling coeflicients in (5) were given in paper 1. They
contain integrals over the product of three mode functions W
(see Appendix A) as well as factors determined by the geome-
try of the interacting triad.

Wave action per unit area is expressed in terms of the slope

variables as (paper 1, equation (2.21))

walNo
w,t = f*

The Boussinesq approximation has not been used to derive
(3), (4), and (5). This approximation entails the neglect of the
term dp/dz dW,,/dz in (4). In Appendix A it is shown to have
a negligible effect on the coupling coefficients in (5). We shall
therefore make this simplifying approximation for our sub-
sequent discussion.

Following Garrett and Munk [1975, 1979], we use the WKB
approximation to solve (4). This appears reasonably valid for
a = 2 (results for a = 1 are at best qualitative but will be in-
cluded for completeness). We also use their dispersion relation

v 2. | kBNy \2
vy =f +'((oz —%)w)

Jra = poNoB® ol ®

2(kB)

™

valid when w,(k) < N, (and assumed valid in this paper for
w,(k) < No/3).

The power spectral density (PSD) of vertical displacement
is written as Y(k, «, z) and normalized so that

(£3i) = i

a=]

&k Yk, a, 2) 8)

where angle brackets represents an ensemble average over re-
alizations of the internal wave field. We shall require only the
spectrum y(k, &) extrapolated to the surface for which (£?) =
{&2) = (7.3 m)*. From (1), (3), (6), (7), and the normalization
of the eigenfunctions W,, (Appendix A), we see that

_ 2o (Iaka|2)
ko) = e ©)
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In this paper we adopt a PSD related to the Garrett-Munk
form [Garrett and Munk, 1975, 1979), with

_ 1 ' 2 (kB)o"!
Wk o) = 37 Np((&B) )[[(kB)z 19010 °2P ™1 + (a/3)‘]}

(10

where p is the ‘wave number slope’ and ¢ is the ‘mode number
slope.” The GM-76 spectrum [Cairns and Williams, 1976] with
p=2,1=2, and Ny, = 0013 is chosen as our ‘standard.’

3. RELAXATION RATES

In this section we discuss and relate three different methods
for calculating relaxation rates in a random wave field. We fix
attention on a single, definite internal wave mode, say that la-
beled (k, a). This is the ‘test wave,” and we study its inter-
action with the ambient wavefield. Averages are denoted by
angle brackets and are over an ensemble of states of the am-
bient field. We suppose that the test wave always has a defi-
nite amplitude at some initial time, say 1 = 0. As 7 — oo, there
will be no difference between this ensemble and an ensemble
of states of the entire internal wave field (including the test
wave).

Fluctuation Dissipation Theorem
We cast the equations of motion (5) for the test wave as a
Langevin equation by representing the nonlinear terms on the
right-hand side by random force R(f) (for convenience we
temporarily drop the mode lables (k, a)):
& +iwa = R(f) (n
From this point of view the test wave is driven by the ambient
waves which act as an ‘equilibrium heat bath.’ It is convenient

to transform variables, defining

b(t) = é“'a(2) 12)

so that (11) becomes

b=e“R = R(p) (13)

Following the conventional argument [Lax, 1960, 1966], we
suppose that at 7 = 0, b has the definite value 5(0). The mean
of b, averaged over the ambient ensemble, obeys the equation

2 (b = (R)
It is anticipated that as t — oo, {b) - 0. This leads to a rea-
sonable postulate for the form of R:
R(z)‘= —vb(1) + F()
(F)=0

Here » is the Langevin relaxation rate (assumed real, since
any imaginary part may be removed by a transformation of
the form (12)).

From assumption (14), (13) becomes

b+ vb = Fp)

14

15)
from which it follows that

(b(®)) = b(0)e™ (16)
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To develop the fluctuation dissipation theorem we, assume
that :
lim (|5()) = o (17)
+—rCO

a constant, ‘equilibrium’ value. (Since the hamiltonian from
which (5) was derived has no lower bound in energy, a true

“equilibrium in the thermodynamic sense does not exist. How-

ever, large amplitude fluctuations are sufficiently rare that we
can ignore this problem. Note the analogy with the theory of
low-lying Stark states of hydrogen.) It is, of course, of interest
to determine if the Garrett-Munk PSD (10) corresponds to
this equilibrium, and this is one of the tasks for the computa-
tions in section 5.

Considerable simplification results by assuming & correla-
tion of the noise :

(FOF*()) = 2D8(1 — t) (18)

where D is a real constant depending on the ambient spec-
trum. Numerical investigations described later indicate that
the decorrelation time ¢, is sufficiently small that (18) is a good
approximation for our application.
Integration of (15) using assumptions (17) and (18) and re-
storing mode labels yields the fluctuation-dissipation result
»elk, a) = 200
ka

= (19a)

where the subscript F indicates that this relaxation rate con-
stant is derived by the fluctuation-dissipation method.

For future comparison with the radiative transfer equation
we generalize (19a) to define a (possibly time dependent) rate
coefficient

D, o)
('akﬂ|2)

Pk, o) = (195)

where (|a,.*) does not necessarily represent an equilibrium
value.

To evaluate D we use the linear approximation for the am-
bient field amplitudes on the right-hand side of (5):

ap(f) = a(0)e ™+

We also use the cumulant discard approximation to reduce
fourth moments to second moments. Evaluation is straight-
forward, giving

Do) = 5 / " (ROFO) dr
= w}l (G P8 m(we + g — w))
0)

+ 2l Glmklzsk—l—ms(wc —wﬂ - wy)} (IaIBP) (Ianylz)

For a large ocean area Y}, we may replace wave number sums
by integrals with the substitution

1o/

and use (20) and (9) to rewrite (19b):
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Pk, a) =27 3, / PlPm (|G, 5k + 1 ~ m)d(w, + wg — w,)
By

2
+ 206 P30k 1 — )b, — p = ) o

x WL, B)Y(m, v)
Yk, a)

1t is clear that #- is a positive quantity.

@n

Perturbation Method

The Krylov-Bogoliubov-Mitropolsky two-time perturbation
method [Bogoliubov and Mitropolsky, 1961) provides an alter-
native means of obtaining a Langevin equation of the form
(15) (see, e.g., Case [1966]). For the lowest-order perturbation
calculation the cumulant discard assumption is not required,
since the test wave is a sure quantity at ¢ = 0 under the aver-
ages. A straightforward calculation yields a complex test wave
frequency

Q.K) = w, + Sw(k, a) 2

The relaxation rate is then

ve(k, a) = —Im (8w(k, @)

=—27 Y, / &1 dEm2G,HGm8(k + | — m)d(w, + wg — w,)
By
+ GG 8(k — 1 + m)d(w, ~ wp + )

+2G, G 8k — 1 — m)d(w, ~ wg — w,)} FYQ, B) (23)

Radiative Transfer Equation

The radiative transfer or Boltzmann equation has been used
by Olbers [1976] and McComas and Bretherton [1977] to de-
scribe nonlinear internal wave interactions. In this method the
equations of motion (5) are used to obtain an equation for
d(|a,[*)/dt (see, for example, Davidson [1972]) in terms of
(a.aa,*), etc. Equations for the rate of change of these third-
order moments involve fourth moments. Closure results from
discard of fourth-order cumulants, leaving second-order mo-
ments. Use of the homogeneity assumption allows expression
of these in terms of the PSD. Finally, first-order perturbation
theory is used to integrate the equations for (a,a4,.*). The re-
sult of all this is the transport equation

d
F1l = 205k, @) (Janaf®) (24a)

h
where (4b)

Vg = bp— Vp
The expressions (21) and (23) for 7 and v, are to be used
here. Symmetry properties of the G coefficients may be used
to rewrite (24) in precisely the form given by Olbers [1976]
and McComas and Bretherton [1977] (Appendix B).
Equation (24) shows the relationship of the Boltzmann
transport equation to the two versions of the Langevin de-
scription. We shall see in the next section that (24) may also
be derived directly from the Langevin equations.
In the application of the fluctuation-dissipation theorem we
were required to assume that the (|a,,|*) corresponded to the
equilibrium state o,,. This was not, of course, used to.obtain
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(23) and (24), which result from dynamical equations. We see
from (24), however, that if (|g,,|*) = 0w, then vy(k, @) = 0 and

vk, a) = vk, a) = vk, a) 5)

The two forms of the Langevin equation and the transport
equation (24) are then consistent. In fact, if the spectrum is
not a true equilibrium but merely a steady state (v; = 0) for
some region of k — a space, (25) is still valid for that region.
We have seen that the quantity », is always positive. Evi-
dently, for a steady state, », must also be positive, although
this is -not guaranteed, since the full expression (23) for », is
not positive definite.

When the ambient field is in (or near) a steady state, so v, >
0, the fluctuation-dissipation “noise” D tends to excite the
mode (k, a) at a rate v, (or 75). Energy is lost to the ambient
field at the rate v, To illustrate the implications of this, sup-
pose that our test wave has arbitrary initial amplitude, but all
other modes are in a steady state. We can then use (19b) to in-
tegrate (24):

o) = lan@P e+ 2 - )

The asymptotic value is evidently

2) = D(k’ ‘x)
vk, a)
as required by the fluctuation-dissipation theorem and (25).

Now, from (16), we obtain (for ¢ large compared to ¢, the cor-
relation time of the left hand side of (18))

(0008 O)) = (O ) e~

{|awal

@n

So from (26), the time scale for {|a,,|*) to reach equilibrium is
determined by v, while the autocorrelation function (27)
decay rate is determined by v

The dynamical calculations reported in paper 1, corre-
sponding to numerical integration of (5) seem to be reason-
ably consistent with (26). A test wave of initially small ampli-
tude was found to grow to the GM-76 value in roughly the
expected time. It remained at this level as long as the calcu-
lation was continued.

In the above discussion we have assumed the existence of 2
steady state solution to (24). For this to have physical interest
the solution should correspond, to some extent, to observed
internal wave spectra. In section 5 we shall present computed
values of # and », for a class of GM spectra and conclude as
did McComas and Bretherton [1977] that GM-76 is nearly a
steady state spectrum except for frequencies close to the iner-
tial frequency and for the lowest mode numbers. Within the
“steady state region” we will see that v, may be several orders
of magnitude smaller than #, and therefore tends to be quite
sensitive to details of the spectrum.

4. FOKKER-PLANCK EQUATION

The assumption that the noise term in (15) represents 2
Markoff process, fluctuating rapidly on the time scale 1, that is
small compared to ».~', permits one to derive a Fokker-
Planck equation for the probability distribution of the ampli-
tude b [Chandrasekhar, 1943; Wang and Uhlenbeck, 1945). To
obtain this, we first write b in terms of its real and imaginary
parts, & = x + iy. The probability density for x and y at time !
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1 1
13 17 2!

Fig. 1. Decay rate versus test wave frequency. Curves are labeled by
mode number. Dashed curve represents v, = w,. GM-76 is used.

is written as P(x, y, t). The Fokker-Planck equation is ob-
tained from (15):
aP

% (28)

= %lvpxl’] + %[vpyP] + (g—z + %)[%E]

Here D is the quantity defined by (20). An equation of evolu-
tion for the wave amplitude intensity
(la®) = S (x* + y*)P dx dy

may be obtained immediately from (28):

21wl = 22,0k, @lons — (ual)] )

109

1
100 10! sx0!

(kB)

1
107!

Fig. 2. Decay rate versus wave number for GM-76.
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This is precisely equivalent to (24) if there exists an equilib-
rium spectrum o, since then »p = »,.

We have now introduced three different rate constants, »p,
ve and v, It is to be observed from (24), (26), (27), and (29)
that », describes the net rate of transfer of action (or energy),
whereas v, (or v) represents a relaxation rate.

5. COMPUTATIONS AND RESULTS

In this section we evaluate (21) and (23) for ¥, and », for
given test wave parameters (wave number, frequency, and
mode number). The coefficients G depend on integrals over
WKB modefunctions W,,,. In Appendix A we show that to a
good approximation the mode number dependence of these
integrals can be replaced by a delta function condition (corre-
sponding to approximate vertical wave number conservation).
This greatly simplifies the evaluation of the decay rates, since
use of the delta functions reduce their calculation to a single
sum over mode number (selects individual frequency reso-
nance curves) and a single integral along each curve.

The parameter range for the calculations is determined by
the region of validity of the WKB model. We allow frequen-
cies in the range f < w < Ny/3, where the upper limit may be
varied to test for senmsitivity of results. If any member of a
wave triad has a frequency greater than the cutoff value, that
triad does not contribute to ». Similarly, we employ a long
wavelength cutoff at 100 km so that the ‘plane ocean’ assump-
tion remains valid. For satisfactory convergence (~5%) of the
values for » it was sufficient to retain only mode numbers in a
band of half width 25 centered about the test wave mode
number. That is, triads lying on resonance curves for which |a
— Bl, |a = y| = 25 were included in the calculations.

Changing the value of the frequency cutoff by 25% typically
produce less than a 5% change in » for frequencies w, < 15f.
For higher frequencies, important local frequency and wave
number interactions (induced diffusion, section 6) are blocked
by the cutoff, and the rates are diminished. Quantitative re-
sults are found up to =17f or even higher for large mode
numbers. Changing the low-wave number cutoff can also
have a significant effect (~factor of 2), especially for low mode
numbers. This is again due to the induced diffusion mecha-
nism where one triad member has a small wave number. The
analysis in section 6 provides a semiquantitative estimate for
the importance of this cutoff.

Figure 1 presents a plot of the decay rate », against test

Fig. 3. Contours of vp/N, for GM-76. The shaded region indicates
negative »p corresponding to test wave growth.
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Fig. 4. Comparison of »5 with ».. The quantity R (equation (30))
is plotted against test wave frequency for selected mode number. GM-
76.

wave frequency for the GM-76 PSD (10). Each solid curve is
labeled by the test wave mode number a. The heavy dashed
curve represents equality between decay rate and linear fre-
quency and therefore distinguishes regions of weak and strong
nonlinearity (below and above the curve, respectively). Since
the theory assumes a weakly nonlinear wavefield, little quan-
titative reliability can be placed on results above the dashed
curve. The high-frequency ‘kink’ in the curves is a result of
the frequency cutoff at 21f.

The results show some common trends and features. For
given test wave frequency, waves with large mode number
(wave number) decay most rapidly: for given mode number,
the higher-frequency (wave number) waves decay fastest, and
there is a low-frequency threshold (w, = 3f) below which the
decay rate decreases very rapidly with decreasing frequency.
These features are also exhibited in Figure 2, which presents
the same results as Figure 1 except », is plotted as a function
of wave number. At high frequencies, a common (mode num-
ber independent) k dependence for the decay rate is apparent.

It was noted in section 3 that the expression (23) for v, is
not positive definite: Interactions for which w, = +(wz — w,)
(‘difference reactions’) have the possibility of giving rise to ini-
tial growth of the test wave amplitude. It is clear that if w, <
2f, difference reactions are the only type of interactions pos-
sible; therefore », is most likely to be negative at these low fre-

Ly
510 20 40
4

Fig. 5. Comparative steady statés for different wave number
slopes p of PSD (10). GM-76 uses p = 2. Nonsteady regions (R > 0.1)
are shaded, and the sign of v is given. Otherwise contours of R are
drawn. Dashed contours denote R = 1072, dots denote R = 1073,
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Fig. 6. Comparative steady states for different mode number slopes
t of PSD (10). GM-76 uses ¢ = 2.

quencies. Indeed our results show growth (negative »;) for
small frequencies, especially at high mode numbers. This is
indicated in Figure 3, which is a contour plot of the rate calcu-
lations. Here the shaded region corresponds to growth, the re-
mainder to decay.

The calculation of the fluctuation-dissipation decay rate #,
is essentially the same as for v, and the same cutoff parame-
ters were used. Numerical estimates of the correlation time ¢,
for the noise term F in (15) show that ¢, ~ w,”, so that the
delta correlation assumption (18) is valid in the same region as
the weak nonlinearity assumption, ¥r < w,.

In section 3 we saw that if ¢ is a steady state PSD for the
mode (k, a), then 74k, ) = »(k, a). Similarly, if the wave
field is nearly a steady state, then v5 = Pp — », is ‘small.’ An
appropriate measure of this is not v, itself but rather the ratio

R(k, ) = 221 (30)

F
which compares the time scale for evolution of the spectrum
to that for relaxation of a single mode. '

The ratio R is plotted against w, for selected « in Figure 4
using the GM-76 PSD. Apart from a sharp increase in R at
low frequencies and at high mode numbers (associated with z,
< 0), the small size of R oversuch a wide range of w, and a is
supportive evidence that GM-76 is a ‘good’ representation of
a steady state. Below we will compare GM-76 with other spec-
tral forms to test the sensitivity of this result.

Olbers [1976) and McComas and Bretherton [1977) have cal-
culated energy transfer rates for various GM models. They
have also determined the direction of the energy flow by map-
ping regions of positive and negative 5. We investigate the ef-
fect of the variation of two parameters in the PSD. Using
GM-76 as the basic form for  (see.equation (10)), we change
the wave number slope p and the mode number slope 1.

Wave Number Slope Change

With the mode number slope given by the reference GM-76
value (f = 2) we compute the ratio R for six values of the wave
number slope. The results are presented as contours in (w. )
space in Figure 5. Regions for which R > 0.1 are designated
‘nonsteady’ and shaded to indicate the sign of »,. Energy
flows from regions of negative (decay) to positive (growth) s
When R < 0.1, contours of R are plotted, and the sign of v i
ignored. The area of this region and of the region R < 0.01 in-
dicates how much of the spectrum is a steady state.

The GM-76 PSD (p = 2) is a steady state except for 10¥
mode numbers (a < 7) where the action decays and for low
frequericies and high mode numbers (w < 2.5f, a > 7) wher¢
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the action grows. Decreasing p extends the v, > 0 region to
fower mode numbers and higher frequencies; increasing p has
the opposite effect. Overall, GM-76 is closest to steady state in
the high wave number region, although the results for smaller
slopes are not very different.

Mode Number Slope Change

Here the procedure is the same as above except that the
wave number slope is fixed at the GM-76 value (p = 2), and
the mode number parameter ¢ is varied. Figure 6 shows the re-
sults in the same format as Figure 5. Unlike the previous case,
as ¢ decteases, the growth region is confined to higher mode
numbers, while the decay region expands. The GM-76 spec-
trum is again more closely a steady state for high wave pum-
bers than the other spectra, although for 2 < ¢ < 3, there is
little change in the steady state region.

Generally, the steady region « > 5 and w, > 3f is insensitive
to the slope parameters p and t. However, these parameters
strongly affect the division between regions of growth and
decay of the action. For GM-76 our computations are in
agreement with McComas and Bretherton, indicating that ac-
tion flows from a = S into @ = 10 and «, = 3f.

6. SPECIAL TRANSFER MECHANISMS

McComas and Bretherton [1977)] have emphasized that cer-
tain classes of triads have significant roles in determining
transfer rates. In this section we shall discuss quantitatively
the importance of these mechanisms for both the Langevin
and Boltzmann rate constants.

We begin with a discussion of the mechanisms called in-
duced diffusion and elastic scattering by McComas and Bre-
therton. We discuss these together as limiting case 1 (LC1). As
previously, we let (k, a) be the test wave; then LCl corre-
sponds to the triad conditions

w,(m) = w,(k) > wg)
m=k>1!

(€]))
In this limiting case the G coefficients have simple forms, and
we may rewrite (21), (23), and (24b) as

[wa(k) — P 3 w (k) = f*
K . By wv(k)

A,
vk, a)

vk, @) = 3 BN,

2
x [y m Lt 5 o)~ 0,09 ok
<k 32)

The index x is used to represent P, F, or B, where

= No‘-’a(k)
A= L - Y @

Ar= ———L——\P(N"w ) k 1)

wyZ(k) —_ fz (33)

Ag=Ar— A,

From (6) and (9) it is seen that A, is proportional to wave ac-
tion. The quantity »,, is the overlap integral of vertical mode
functions evaluated in Appendix A.

Equations (32) and (33) show that for LCI triads the steady
state condition », = 0 corresponds to

Ap=Ap (349
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or that 4 be independent of mode number (equipartition of
action). (For the case of induced diffusion this was noted by
McComas and Bretherton [1977].) The results (32) and (34) do
not require either the WKB or the Boussinesq approxima-
tions. Thg WKB dispersion relation (7) yields for (34)

Yk, o) ~ a”!

~except near the inertial frequency, which is precisely the form

of GM'75 ( 1‘0) in this domain and for a > 3. The numerical
calculatu‘?ns in the previous section show a steady state in this
same region. We_ shall see in the following that this is because
LCl tn.ads dominate the wave interactions.
The integral vy, appearing in (32) is evaluated in the WKB
approximation in Appendix A. From this we see that
Van® € [8.— —y F Oerpy + 8umpry] (35)
(I-?or our actual calculations we use the more accurate form
given in the Appendix.) The terms 8 = +(a — y) when y = «
> B correspond to induced diffusion (ID). The term 8 = a +
y corresponds 1o elastic scattering (ES).

Analytic evaluation of (32) for these two cases gives the ex-
pressions

Induced diffusion
Ze —64x 10— (2= PB~ o,
No (1 = (m0,/2No))* BB + 9N,

<1, (e~ Dfe, (39
- v e
‘Elastic scattering
2 10x 107 KB NCw,
T YA

2 BB +9) (w0, — PP = (rw,/2N,))

B=14+ (a°i)[l + (.’ —f’)/(wyz—fz)lm}

The sum *+,— above represents the sum over the two cases
w, = w,(k)  f (38)

For the analytic evaluation of (36) and (37) the upper limit of
the integral over / in (32) has been taken to be infinity, since
this has little effect on the result. The numerical calculations
reported in section 5 use a lower limit Z,;, = 2/(100 km). If

we incorporat.e thxs cutofl in our analysis, expressions (36) and
(37) are multiplied by a factor

[1 - Q/7) tan™" (1., BNo/Brf)]

In Figure 7 we compare the ID expression (36) (dashed
curve) w1.th the calculated numerical results (solid curve) for
v (for this comparison the ! integral cutoff was included). It is
evident that except for f < » < 3 £, the ID mechanism pro-
vides a very good approximation for », and that », may be
easily calculated from the analytic expression (36).

In Figure 8 we compare the ES (36) and ID (39) expressions
for vp. It is seen that ES is much less important than ID. The
ES mechanism was significant, however, for the ‘up-down’
asymmetry calculation of v, by McComas [1978}, because his
perturbed state was in approximate equilibrium for ID.
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Fig. 7. Comparison between the dominant induced diffusion
transfer mechanism (equation (36)) and the full numerical calculation
of vp/N,. Curves are labeled by mode number.

The parametric subharmonic instability (PSI) mechanism
of McComas and Bretherton [1977] corresponds to a large-
scale double-frequency wave interacting with two smaller-
scale waves with nearly equal frequencies. In our notation,
this corresponds to 8 ¥ @, v,

(39)

We/2 = W, = W,

with no strong condition on wave number. Since the ID
mechanism successfully accounts for the interactions with w,
= 3f, we expect that, at most, PSI could be important in the
region w, =< 2f. For this case we find

40)

Vp=—V¥gp

and an analytic evaluation is again possible: In contrast to the
ID and ES derivations a finite upper limit must be imposed on
the ] wave number integration for convergence of the approxi-
mate expressions.

Choosing /.. = k, a rather crude approximation for v, in
the range f < w, < 2f can be derived which gives the correct
order of magnitude:

i) 2 \5/2
]7’0 =—35(10)” (4 - wi;) [Q ~tan™' Q]

«

Ve

—_— —

0

kBN,

o, = 7 @b

Q -
Values calculated from (41) are shown in Figure 8.
The main conclusions of this section are that for w, >3f and
a = 5 the ID mechanism expressed by (36) provides a good
description of relaxation within the internal wave field. Equa-
tion (32), its analytic solution, and the good agreement with
the full numerical calculation explain why the GM-76 spec-
trum is nearly a steady state in this domain. For a detailed dis-
cussion of the significance of the individual mechanisms we
refer to McComas and Bretherton [1977).

POMPHREY ET AL.. INTERNAL WAVES INTERACTING

7. ENERGY FLOW

Three-wave interactions are only one of the many processes
which contribute to the overall energy balance in the ocean.
To understand the measured internal wave energy spectrum
requires a quantitative measure of flow rates between the vari-
ous sources and sinks. Here we obtain an estimate of the en-
ergy flow rate through the nonequilibrium region of GM-76
which also indicates the energy requirements to maintain the
spectrum. ‘

The mean energy per unit area E(k, a) for the test wave is

(paper 1, equation (2.19))

Ek, o) = w(k){Jia)
The flow rate is obtained by taking the time derivative of (42)

using (24), (6), and (9):

dEk,a) _ 47 20}

d 2 wl-f
Since the radiative transfer equation conserves total energy,
the net energy flow from the region v, < 0 is equal to the flow

into vz > 0. We compute the flow from the negative region by"
integrating (43) over this domain of &, a space:

dE© dE,© dE
=2 =X -

42

vsp(k, a)poN,’B 43)

vy <0 (44)

dt ; dt

The calculated partial rates dE,)/dt are given in Table 1
for mode numbers between « = 1 and a == 6. For the first 5
mode numbers they are comparable, while for & = 6 the rate
has decreased by nearly a factor of 2, and the contributions
from « > 6 (not shown) are much smaller. Except for a = 1,
the main contribution to the k sum in (44) peaks near w, =
2.2f, independent of a. Although the peak is not sharp, it does
suggest that the flow through the spectrum to smaller frequen-
cies is weak. The major flow is from low to high mode num-
bers. The net energy flow rate from the region of negative v,

L

-5
10

! 3 9 27

w/f
Fig. 8. Comparison of contributions to |v|/N, from special
transfer mechanisms. Analytic expressions for induced diffusion
(equation (36), solid curve), elastic scattering (equation (37), dashed
curve), and parametric subharmonic instability (equation (41), dot-
dash curve), are evaluated. Curves are labeled by mode numbers.
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TABLE 1. Energy Flow Rates (W m~2) From Low Mode Numbers

dE,")

o« - =g X1

1 1.1

2 13

3 i.3

4 1.1

5 1.0

6 0.6
dE,

dE(-) -
== }; = =—6.4 (10)™* Wm™2
sums to dE/dt = 6.4 (10)™* W/m? for a =< 6, and we believe
that this represents only a slight underestimate of the total
rate.

Olbers [1976] has evaluated the transfer rate to high mode
numbers for the GM-75 spectrum and found it to be 3 (10)~2
Wm™?, significantly larger than our GM-76 rate. McComas
and Bretherton [1977], however, have noted a sensitivity of re-
sults to spectral shape, as is reflected in our Figures 5 and 6.
Thus the validity of computed transfer rates certainly depends
on the precision to which the spectrum is known.

APPENDIX A: OVERLAP INTEGRALS FOR
EXPONENTIAL PROFILE

The explicit form of the coupling coefficients G in the equa-
tions of motion (5) is given in the appendix of paper 1. The
only Viisild profile dependent terms in these coefficients are
the ‘overlap integrals:’

0

Viim = _l" / 14 Wkal Wlﬂ, Wnnr’ dZ
Po J-n

. (AD)

pW.WeW,, dz

ko L
Hum Po J-u

where the mode functions W(z) are solutions of (4) with the
normalization

1 f° ’
;); /: o '(Nz ~f 2)P W.Wip dz = sa,B (A2)

The Boussinesq approximation entails setting p = p, = p(z =
0) in these integrals as well as in (4). Since typically p varies
by only ~0.3% over the depth of the ocean, this approxima-

tion has little effect on the values of the overlap integrals (Al).
In this approximation the eigenvalue problem (4) becomes

W' + Q@) Wia =0

N(2) -~ w,?
o

(A3)
Q=K (

where Q.. is the ‘vertical wave number as a function of
depth.

If we restrict ourselves to the region w <« N, the g, in-
tegral can be neglected. Qualitatively this can be seen by con-
sidering the constant profile model

N=N, B<z<0 (Ad)

for which
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Viim = J_V?TZ[—B)'_”- 0.050, {Ba—p—y + 8p—y—a + 8,—0g}
o = g0 eis + Do ¥ b (A9)
-

From the form of the coupling coefficients (paper 1, equation
(A.2)), it is seen that the ratio of the u to the » containing
terms is given by

(k/Q) ~ (/N < 1

This result is confirmed quantitatively by numerical evalua-
tion of the overlap integrals for the exponential profile.

To compute »,,,, it is sufficient to use the WKB solutions of
(A3) correct to first order in 9 = w/Ny:

Wyo() = ( %)"2 1 _dioon o 1o2) + /4]

N ] qu(o)

where N
0.0 5l—mmal i A=ra-d

B0’ @)}

dka£[ Aa+%

(AS)

o) = (,% - 1)Qk.,(0)B +a,

The WKB overlap integral is formed by differentiating W,,
neglecting the derivative of the ¢~*/?# term, and substituting
into (Al). The result is

o Vi

Viim = W dkudlﬂdmy {[ Imk +1 mkl + Iklm} (A7)
where
P’ /2 3
Lk =(5,—) [Cx(g) sin ¢ — Sx(g) cos 4] (A3)

Here S, and C, are Fresnel Integrals [Abramowitz and Stegun,
1964], and g is the dimensionless vertical wave number mis-
match at the surface

q = B|Qx. (0) — Q1s(0) — 2. (0)] (A9)
To first order in 7 this can be written as -
g=ma—B—y+i+1i@A ~neds —2,4) (A10)

The function I,.* is peaked about zero vertical wave num-
ber mismatch. This gives an approximate vertical wave num-
ber conservation law analogous to that in (AS5) for the con-
stant N model. Comparing (A7) with (A5) further shows that
d,, plays the role of effective vertical wave number.

A simple functional fit to-7,,,* is given by

L (q) = 3™ cos (bg) (AlD)
where a = 0.0453 and b = 0.3743. It involves an error of less
than 4% for 0 < ¢ < 4.

To facilitate the evaluation of the Langevin decay rates we
approximate the function I,,* with a delta function, thereby
enabling one of the mode number summations in (22) and
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(25) to be replaced by a trivial integral. Using expression
(A1l), it can be readily verified that the replacement

&(9) (A12)

I“" = (2)1/2
is valid.

Numerical computation of the overlap integrals using the
exact Bessel function solutions [Garrett and Munk, 1972] show
that the accuracy of (A7) decreases with increasing frequen-
cies reaching 40% at w/N, ~ 0.25 (providing the mode num-
bers are greater than 1). For g= 0 the p,* are typically less
than 20% of the B%,,; however, as g increases, » decreases
rapidly (see (A11)), while g is relatively constant.

The relation of the eigenmode formulation used here to the
vertically propagating wave description of Olbers [1976] and
of McComas and Bretherton [1977] is seen with the construc-
tion of wave packets. We choose a position z, and an interval
|z — zo| = L,/2. The a,,’s may be replaced with a new set of
coefficients b, », defined within the interval L,, with the rela-
tion

i Y No(B) W@ =~ 3, e™bisbz—2)  (Al3)

Here
AMz—zy)=1 ]z—zo|<7"
AMz—z)=0 |z—-zo|>£2—'
and
P=Pn)=—~— n=0,%1,+2,

Equation (A13) may be ‘solved’ for either the a,, or the b,,
using (A2) or the relation

f dz A(Z - zo)ei(l’—l’)z = L,shp

With the approximation (A12) it is straightforward to reex-
press (5) with the (k, P) labels.

APPENDIX B: ALTERNATIVE EXPRESSIONS FOR
RELAXATION RATES

Equations (21) and (23) can be rewritten in a form which
makes transparent their relationship both to one another and
to the familiar radiative transport equation of Olbers [1976),
McComas and Bretherton [1977), and Davidson [1972].

To do this we use the hamiltonian coupling coefficients
T'\(k; I, m) defined in paper 1 (Appendix) and also the wave
action variables (6). In terms of these the relaxation rates are

Dbk, ) =47 3 5 Tk L m)P 8yrond(wa — wp — @)
By Im

+ (T &, D81 pb(w, + wp— @)} (Jig) (Jmy)  (BD)
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(o) ok, o) = 47 ﬂZ E BIT (ks 1, )Py md(w, — wp — @,)
X ((Jlﬁ> + (J-rr))(-’kq) + 'rl(m; 17 k)l28k+l—m8(wa + wﬁ - wv)

X ((Jig) = (Jm)){Jiad} (B2)

Substitution of these expressions into v, (24b) yields the usual
expression.
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