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ABSTRACT. The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In
particular, the effects of low shear within the plasma upon pressure driven modes are assessed. The standard balloon-
ing theory is shown to break down as the shear is reduced, and the growth rate is shown to be an oscillatory function
of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the
pressure profile and the safety factor profile. When the shear is sufficiently weak, the oscillations can result in bands

of unstable n-values, which are present even when the standard ballooning theory predicts complete stability. These
instabilities are named ‘infernal modes’. The occurrence of these instabilities at integer n is shown to be a sensitive
function of the q-axis, raising the possibility of a sharp onset as the plasma parameters evolve.

1. INTRODUCTION

The importance of shear in determining the ideal
MHD stability properties of tokamaks is well recog-
nized. The general understanding of its role was
largely based on simple cylindrical models, for
instance presented in the review articles of Wesson [1]
and Friedberg [2]. More recently it has become clear
that careful numerical treatment is essential to define
the effects of shear on the stability of ideal MHD
modes [3-8]. This understanding has been used to
propose paths to second regions of stability [9, 10].
However, there remain areas of imperfect understand-
ing, one of which we intend to explore in this report.
In particular, we assess the role of low shear on the
stability of pressure driven modes. The shear generally
refers to a gradient in the safety factor profile. In
some situations it is represented by the ratio of q-edge
to g-axis; it can also be defined as y dg/dy (= y¥q’),
which will be referred to here as the global shear.
Another form that plays an important role in high-n
ballooning modes is the local shear, a quantity which
measures the skewness of the magnetic field lines on
nearby surfaces and which has been identified as play-
ing a critical role in determining stability to ballooning
modes [7].

In this report we are largely concerned with the
global shear and its effect on internal pressure driven
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instabilities. These modes have been analysed exten-
sively using analytical and numerical methods. In
general, when the toroidal mode number, n, is large,
the ballooning theory [11-13] is applicable. In this
approach it is observed that ballooning modes can be
constructed from the overlap of many localized Fourier
modes peaking on their own rational surfaces. In the
high-n limit, this also implies a radial localization of
the mode, which permits the reduction of the equations
to an ordinary differential equation valid on each flux
surface. Thus, each flux surface can be independently
tested for stability to high-n ballooning modes. In con-
trast, when n is small (~ 1), the numerical approach of
solving the full two-dimensional ideal MHD equations
[14, 15] is required. This approach can, in principle,
be extended to high n. However, in practice, mode
resolution and hence computer memory requirements
restrict the analysis to n < 10. Ballooning theory has
been modified to include finite-n corrections, and has
been shown to agree with the detailed MHD approach
down to n ~ 5 [16-18]. Ballooning theory predicts
that the largest n modes are the most unstable, and that
as n is decreased the growth rate decreases monotoni-
cally. In certain circumstances this picture is modified
to include an oscillatory dependence of growth rate on
mode number. This is shown explicitly in Ref. [16],
where n is treated as a continuous variable. The
oscillatory behaviour has been independently described
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by Hastie and Taylor [19], who attribute the oscilla-
tions to a breakdown of the standard ballooning theory
when the global shear becomes weak. They also
propose a new theory which would supersede the
standard ballooning theory in these conditions. They
postulate regions of validity of their theory and show
that in the high-n limit the standard ballooning theory
is recovered. This paper treats the same problem. In
particular, we verify the Hastie-Taylor theory when
the shear is weak, and we also show that if the shear
is further reduced, even this theory breaks down;
instabilities are observed, which can be present even
when the standard ballooning theory predicts complete
stability. We call these instabilities ‘infernal modes’.
We discuss them and analyse the role of both p’

(= dp/dy) and ¢’ in driving the instability.

Weak shear near the axis is often accompanied by
strong shear near the plasma edge, which has a strong
stabilizing influence on the external kink mode. In this
situation the threshold for instability can be at very
large values of beta (= 2 {p)/(B%) and the instability
can take the form of an internal mode, where the
boundary conditions play a minor role in determining
stability. In particular, when q’ is small and p’ is large
near the axis, the resulting instability may be domi-
nated by a low-m (~ 1) Fourier component, even when
there is no g = 1 surface inside the plasma. This is
significant, in that it represents a fairly typical operat-
ing scenario for tokamaks, suggesting that these
instabilities may play an important role in present high
beta tokamaks.

In the following sections we first describe the
equilibrium models and numerical methods used in this
study. Then we present our results, highlighting
several of the issues raised here. Finally, we present
our observations and conclusions.

2. EQUILIBRIUM MODEL
AND NUMERICAL METHODS

This study focuses on the influence of shear on
stability to pressure driven modes. Since these are
essentially profile related effects, we choose a simple
geometry for the plasma and consider a circular cross-
sectional tokamak with an aspect ratio R/a = 4. The
q-profile is specified to have the functional form

q =g+ q ¥«

so that qo determines the g-axis, and g-edge is
Qo + q,- We have chosen gy = 1.05, and q; = 2.05
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FIG. 1. Safety factor profiles q(}) used in this study.
Quxis = 1.05, q,4, = 3.10 and o, varies between 1.1 and 6.0.

for the majority of cases studied here; exceptions will
be noted. The flux label ¢ is normalized to have a
value of zero at the magnetic axis and to be unity at
the plasma edge; o is used to vary the shear. When
o is greater than unity, which is the case for this
study, the shear has its minimum near the axis. If
g-axis and g-edge are held fixed as «, is increased, the
effect is to weaken simultaneously the shear near the
axis and to increase the shear near the edge. Figure 1
shows the g-profile for several values of «. The main
body of results requires a large pressure gradient in
regions of low shear, hence we adopt a pressure pro-
file of the form

p = po (I—y2)™

with &, = 4 and o, = 1.5. The central pressure, pg, -is
adjusted to yield the desired value of 8. The profile
and its derivative are shown in Fig. 2(a). We choose 3
so that, as ay is varied, the resulting equilibria remain
unstable to ballooning modes. A convenient choice for
our study is to set 3 equal to 1.5%. The equilibrium
calculations are made with a flux co-ordinate solver
{20] on a mesh with 50 radial and 100 poloidal inter-
vals. This is then interpolated onto a finer grid with
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FIG. 2. Pressure profile and its derivative corresponding to:
(@) a = 4.0, a; = 1.5, used for most of the studies reported.
) a; = 2.0, a, = 6.0, with the derivative shifted to the outside.

200 radial and 128 poloidal intervals for the stability
analysis, which is conducted using the PEST code
[14]. This mesh is also used for the standard WKB
ballooning code [16]. In this study we consider toroi-
dal mode numbers up to 12, which requires an ability
to resolve poloidal harmonics with a value up to 40.
To ensure this resolution, at the higher values of n, we
double the number of poloidal mesh points (256). An
examination of the resulting eigenvectors shows the
adequacy of these meshes. Finally, we note that, since
we intend to compare eigenvalues of different toroidal

NUCLEAR FUSION, Vol.27. No.9 (1987)

PRESSURE DRIVEN MODES IN LOW SHEAR TOKAMAKS

modes, we cannot use the scalar version of PEST [21];
instead, we use the proper kinetic energy normalization
of the complete representation [14].

Our procedure is to generate several equilibria for
different values of o, keeping 8 equal to 1.5%, and
then analyse them for stability to ballooning modes. A
conducting shell is placed at the plasma edge and the
radial perturbation is required to vanish there. We uti-
lize the WKB code to determine the stability properties
according to the standard. ballooning theory, including
predictions of the critical n for instability using the
quantization condition where applicable. We then
analyse the same equilibria using the PEST code, treat-
ing the toroidal mode number n as a continuous real
variable, rather than as an integer. This is justified by
the fact that n appears as a fixed expansion parameter
in the ballooning theory. Further, it generally appears
in stability analysis as a product of n and g, and we
can interpret non-integer n for a certain value of q, as
an integer n for a slightly modified g-profile. We plot
the growth rate as a function of n and compare the
results with the predictions of the different ballooning
theories.

0.6
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FIG. 3. (a) Variation of the growth rate (), in arbitrary units,
with the toroidal mode number (n) for the q-profile with a, = 1.5,
B = 0.8%. B marks the critical-n for marginal stability as deter-
mined by a WKB code.

(b) Contours of constant growth rate, \(y,8,), from the WKB code.
The outermost contour signifies marginal stability, X = 0.
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3. RESULTS

The PEST code, being an exact code with no
approximations or orderings, will be used to represent
the true situation. We will then compare the results of
the ballooning mode analysis with the PEST results.
We commence with a case that conforms to standard
ballooning theory. For this we choose ¢, equal to 1.5,
8 ~ 0.8%, and the pressure profile of Fig. 2(a).
Figure 3(a) shows the results from the PEST-II code
[21], plotting the growth rate as a function of n. (The
PEST-II code has been used here since we only look
for the point of marginal stability; in all subsequent

studies we use the PEST-I code [14].) An extrapolation

to zero growth rate shows a critical n of 5.6. The
results of ballooning mode analysis are shown in
Fig. 3(b), where we plot contours of constant growth
rate A in the -6, plane; 6, represents the angle
between the radial component of the wave vector, k,,
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FIG. 4. (a) w? versus n for a, =11, B=15%.

(b) Contours of \M.8,).
(w? is normalized in units of the poloidal Alfvén frequency for this
and subsequent figures. )
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and the component parallel to the field line, k,. Details
of this can be found in Ref. [16]. In the present paper
we plot A(i/,6,) rather than \(q,8,) to enhance the
visibility of the unstable regions. Using a WKB quanti-
zation condition, it is then possible to determine the
value of the critical n above which the mode is
unstable. In this example the critical n has the value
5.7, which is in virtual coincidence with the value
predicted by the PEST analysis. This confirms the
general validity of the codes and procedures used in
this study, and reaffirms the possibility of correctly
analysing moderate-n ballooning modes in a standard
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FIG. 5. (a) w® versus n for a,= 1.5, 8=15%.
(b) Contours of \(y,8,).
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situation with both the ballooning code and the PEST
code. We now proceed to the analysis of weak shear
equilibria.

The role of the shear is central to these results;
hence we fix the pressure profile and adjust p, such
that 8 remains approximately constant at a value of
1.5%. We then vary the shear profile parameter
over a wide range to modify the shear. The results are
shown in a form similar to that of Fig. 3. In each case
we show the variation of the growth rate in units of
the poloidal Alfvén frequency, as obtained from the
PEST code, with the toroidal mode number n. Cor-
responding to the PEST analysis we also show the bal-
looning code analysis as contours in the y-6, plane. It
will be noted that some of the contours appear as open
lines when a separatrix is present. In this situation the

(b) .

FIG. 6. (a) w? versus n for Q, = 20, 08 =15%.
(b) Contours of \N(y,6,).
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usual method of determining the critical n from the
area of the closed contour corresponding to A = 0
breaks down, and the critical n reported must be consi-
dered as approximate. The results for o equal to 1.1,
1.5, 2.0, 2.5, 3.0, 4.0 and 6.0 are shown in

Figs 4-10. The PEST results for this sequence of
equilibria show a distinct progression, from a relatively
smooth monotonic dependence of the growth rate on n,
to a strongly oscillatory function, which eventually
leads to alternating stable and unstable bands in n. We
attribute this to the gradual reduction of the shear, q’,
in the vicinity of the driving force — the pressure
gradient. We note that when o is less than 3, for
n-values higher than 5 there is a monotonic variation
of the growth rate, and for lower n-values there are
oscillations. This result is in agreement with the low-
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(a)

0.5

(b)

0.4t

0.2}

~0.5

FIG. 7. (a) w® versus nforo, =25 08=15%.
(b) Contours of N(y,0,).
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shear theory of Ref. {19], which predicts that when q’
is small, a critical value of n exists above which stan-
dard ballooning theory would apply; below this value,
oscillations in the growth rate would be expected. This
general picture is clearly supported here and will be
discussed in greater detail below. As o, increases, the
oscillations are extended to larger values of n; the
PEST code is limited to n-values of about 10 and
hence the expected monotonic variation at high n is not
observed in these cases.

The ballooning analysis of these equilibria shows a
distinct topological change in the constant A contours
as ¢ is increased. We note that the region of insta-
bility extends to 8, equal to w, and a separatrix
appears. In Ref. [16] it is argued that the appearance
of this separatrix is responsible for the oscillations in
the growth rate, which would peak whenever a rational
surface coincided with g,, the surface corresponding to
the separatrix. Figure 5 shows that mild oscillations
can be present even when there is no separatrix. We
believe this is due to the high beta value which, for
this g, is considerably higher than the threshold value

-0.5 1 1
0.2 0.4 0.6 0.8 1.0

FIG. 8. (a) w’® versus nfor o, =3.0,8 = 1.5%.
(b) Contours of Ny,0,).
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for marginal stability. This characteristic appearance of
a separatrix is an extremely useful diagnostic for
detecting the presence of oscillations. Finally, in rela-
tion to this set of figures we comment that when the
oscillations are limited in size and range there is some
agreement between the critical n as determined by the
PEST code and the WKB ballooning code. When ¢ is
3 or greater and the oscillations are strong, there is no
correlation whatsoever between the two codes. In fact,
the concept of the critical n is itself questionable.

We have explored the role of the shear in determin-
ing the conditions for oscillations. We now analyse the
role of the pressure profile. The profile used in the
first set of equilibria has its largest gradient at ¢ of
approximately 0.2, as shown in Fig. 2(a). This is also
the region where the shear is reduced the most as « is
changed. We now choose the pressure profile so that it
peaks further out, nearer to the plasma edge, by setting
a; = 2.0 and «, = 6.0. This puts the maximum of p’
at y = 0.9, as shown in Fig. 2(b). The g-profile is
chosen to be the same as the one analysed in Fig. 9,
with o, = 4. Figure 11 shows the stability analysis of
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FIG. 9. (a) w” versus n for a, =40, 8 =15%.
(b) Contours of Ay,6).
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this equilibrium, Fig. 11(a) giving the PEST results
and Fig. 11(b) the ballooning results. These are to be
compared with Fig. 9. The oscillations have dis-
appeared completely and we recover a smooth
monotonic dependence of the growth rate on n. This
suggests that for oscillations to appear it is necessary to
have both low shear and a large enough p’ in the
regions of low shear. In fact, on the basis of the
results of Figs 3 and 5, which are for the same q and
pressure profile shapes and which differ only in the
beta (0.8% and 1.5%, respectively), we note that even
if q' is moderate, the oscillations can be made to
appear if beta is increased. However, once instability
is reached, it is irrelevant to increase beta any further,
and the issue of oscillations at higher beta is of
academic interest. On the other hand, if oscillations are
present close to the threshold of instability, they may
have practical consequences. This will become
apparent when we study an equilibrium that is stable to
infinite-n ballooning modes. We do this by choosing an
equilibrium with parameters similar to those of Fig. 10

0.1 T T T T T T T

oyt ﬂﬂﬂﬂﬂﬂ

0.5 T T T T T T T

0.4} (b)

0.3~ 1
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0.2 0.4 v 0.6 0.8 1.0

FIG. 10. (a) ® versus n for a, = 6.0, 8 = 1.5%.
(b) Contours of Ny,6,).
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(pressure profile of Fig. 2(a) and oy = 6), and
reducing beta until we obtain stability to ballooning
modes; this occurs at § = 1%. This equilibrium is
then analysed to obtain the results shown in Fig. 12.
Since this is stable to ballooning modes with n = oo,
there is no Y-8, contour plot. We note the existence of
unstable bands at low n, which vanish when n gets
sufficiently large. This represents a case where the
ballooning mode results would be misleading, as they
would infer stability when in fact there are several
low-n internal pressure driven ‘ballooning like’ modes.
The modes that persist even after the high-n modes are
stabilized are termed ‘infernal modes’.

For the results presented here, a simple
parametrization of the g-profile has been used. This
form has the disadvantage that the shear throughout the
plasma is controlled by a single parameter. Thus, if
the shear near the axis is reduced, this increases the
shear near the edge. We now introduce a parametriza-
tion of q of the form

qQ =G+ q ¥ for 0 < ¢ < ¥

q=q + q ¥+ Q¥ fory, <y <1

0.3 T Y T T T T T T
fa)
0.2 J
2
-w
o.1 -
[} | 1 1 | 1 | 1 1 !
o | 2 3 4 5 6 1 8 9 10
n
0.2 T T T T T 1 T T
ol b) ]
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2w
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0.2 0.2 0.4 0.6 0.8 1.0
14

FIG. 11. (a) w? versus n for a, = 4.0, 8 =1.5%.
The pressure profile of Fig. 2(b) is chosen to minimize the
gradient in the region of low shear.

(b) Contours of NMy.6,).
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This form permits us to lower the shear in the region
0 < ¢ < ¢, without a large shear outside it being
required, and it more closely represents experimental
profiles. Figure 13 shows the q, p and J, profiles as a
function of the distance from the major axis for this
profile when qq, q;, @, g, @g and Y, have the values
1.05, 0.15, q,, 1.1, 2.8 and 0.3, respectively. Note
that the value of q, is adjusted so that the g-edge is
3.1. The pressure profile parameters are the same as
those used earlier, i.e. @; = 4 and a; = 1.5. With p,
adjusted to give B = 1.45%, we find the w? depen-
dence shown in Fig. 14(a) and the ballooning stability
shown in Fig. 14(b). As before, we note the presence

o 1

A [\l N AL AL A
2 3 4

FIG. 12. o’ versus n for a, = 6.0, 8 = 1.0%; pressure profile of
Fig. 2(a). This equilibrium is stable to high-n ballooning modes.
The low-n modes are termed ‘infernal modes’.

0.75 .0 1.25
X (m)

FIG. 13. Current density, pressure profiles and g-profiles for a
model equilibrium that mimics typical experimental profiles. The
units are arbitrary, G = 1.05, g4, = 3.1 and 8 = 1.45%.
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FIG. 15. W’ versus n for the equilibrium parameters of Fig. 13,
with 8 = 0.8%, showing the ‘infernal modes’ where high n is
stable.
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FIG. 16. w*® versus n for the equilibrium of Fig. 15, with the
toroidal field scaled so that q,;; is 0.96 instead of 1.05. Note the
resonances of the instabilities with integer n.

of the separatrix and the sharp resonances in the
growth rate for particular values of n. The peaks do
not coincide with integer n and, in fact, only n = 1
and n = 2 are found to be unstable. At lower beta
(0.8%), the ballooning mode is stable; however, the
‘infernal modes’ are seen to persist, as shown in

Fig. 15. To demonstrate the relevance of these modes,
we note that when q is modified slightly, the
resonances can destabilize several integer values of n.
Figure 16 shows the growth rates for the case of

Fig. 15, with the toroidal field scaled so that the g-axis
changes from 1.05 to 0.96. We note that in this situa-
tion several integer n-values are simultaneously
destabilized.

The ‘infernal modes’ add a new wrinkle to the
estimation of beta limits. Traditionally, beta limits
have been calculated from an analysis of the n = 1
external kink instability and the high-n ballooning
instability; low-n and intermediate-n modes have been
largely ignored. This study indicates that such an
approach may not be adequate. To illustrate this, we
determine the beta limit for a toroidal mode number
near the peak of the resonance, between n = 1 and
n =2, ie. n ~ 1.8, for the sequence of g-profiles
studied in Figs 5-10. This beta limit is compared with
that of the high-n ballooning mode in Fig. 17. For
aq > 2, the low-n mode is seen to have a significantly
lower threshold. We also note that in this case the

NUCLEAR FUSION, Vol.27, No.9 (1987)
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toroidal mode numbers with n corresponding to the
higher resonances have thresholds which lie between
that for n = 1.8 and n = . The region between the
two curves marks the domain of the ‘infernal mode’.
Finally, Figs 18 and 19 show plots of the displacement
vector field for two typical ‘infernal modes’, with

n = 3 and n = 7. The low-n mode is seen to be broad

1.5 T T T T T T
u
n:=@
Ballooning
1.0~ —
B (%) Infernal Mode Regio
0.5 -
n=1.8
o L L 1 ! L L
[} | 2 3 4 5 6
9q

FIG. 17. Variation of the beta limit with the shear parameter o,
for the infinite-n ballooning mode and for the mode with n = 1.8.
The region of instability for each mode lies above the correspond-
ing curve. The hatched region identifies the domain of the ‘infernal
mode’.

0.3t

0.2+

0.7 0.8 0.8 1.0 (] 2 .3

FIG. 18. Projection of the unstable displacement vector onto the
x-z plane, for the case with o, = 3.0, 8 = 1.5%, and toroidal
mode number n = 3.0.
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FIG. 19. Displacement vector for the same equilibrium
as in Fig. 18, with toroidal mode number n = 7.0.

in its radial extent and may be expected to affect the
plasma drastically. The higher-n mode is, however,
more localized in its radial extent and the usual under-
standing of the ballooning mode may apply here.

4. DISCUSSION

Pressure driven internal modes in tokamaks have
been shown to exhibit a rich complexity if the global
shear is weak. Hastie and Taylor [19] have pointed to
this in their work and identify two regimes of interest.
When n and q' satisfy the relation n » (yq') 72 » 1,
Hastie and Taylor predict that the standard ballooning
theory is valid. When the shear is reduced, so that
(¥q’)"2 » n > 1, they find that there is a need for
their new theory. The significant features of their
theory are that the growth rate will be an oscillatory
function of n with decreasing amplitude and that, when
n is large enough to recover the first condition, the
results match the standard ballooning theory. The
period of the oscillations is predicted to be constant in
n (An ~ 1/q), but the amplitude decreases as 1/n%. To
determine the region of validity of each of these
theories, we plot in Fig. 20 (yq’) ? as a function of
the radial location in the plasma for different values of
o,. Since the gradient in the pressure profile peaks at
¥ ~ 0.2, it is relevant to concentrate on that surface.
We note that for oy < 2 at y = 0.2 the value of
(¥q') "% is about 1, and we might expect the standard
theory to be valid for all n > 1. This is supported by

1470

the results of Figs 3-6. As q, is increased from 2 to 3,
(¥q’) ~? increases sharply from 1.5 to 15. This gives
us the conditions to test the Hastie-Taylor theory. In
fact, when oy, = 2.5, we have observed that when n is
greater than 10, the oscillations in w?(n) are damped
and a monotonic variation is recovered, as predicted.
This is partly shown in Fig. 7, which is restricted to

n < 8, but clearly shows a diminishing oscillation
amplitude. The reduction in the amplitude does not
exactly match the predictions of the Hastie-Taylor
theory. At small values of n, the amplitude decreases
slower than 1/n, and, as n is increased, it approaches
the predicted 1/n”. However, for oy > 3, we see no
evidence of a reduction in the amplitude of the oscilla-
tion and even the Hastie-Taylor theory breaks down as
we enter the ‘infernal mode’ regime. It is important to
note that it is the value of (y¥q") 7?2 at the surface of
largest p’ that matters, not « itself. This is evident
from the results of Fig. 11, where p’ was chosen to
peak at Y = 0.9, a surface at which (yq")~? < 1. For
this case we note an absence of the oscillations in
w?(n).
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FIG. 20. Plots of (') “2 versus y for different . Standard
ballooning theory is valid for n well above the appropriate curve.
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s

charges for a possible connection with ‘infernal mode
activity. Unfortunately, the experimental data rarely
provide detailed information on the g-profile — a
fundamental requirement for this sort of analysis.
Finally, we note that these instabilities may play a
major role in ignited plasmas, where all the required
plasma conditions may be present. To avoid them, it

will be necessary to maintain finite shear in the interior
of the plasma or to broaden the pressure profile so that

the pressure gradients are minimal in regions of low
shear.
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