Three-dimensional plasma equilibrium near a separatrix
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The limiting behavior of a general three-dimensional magnetohydrodynamic (MHD)
equilibrium near a separatrix is calculated explicitly. No expansions in beta or assumptions
about island widths are made. Implications of the results for the numerical calculation of such
equilibria are discussed, as well as for issues concerning the existence of three-dimensional

MHD equilibria.

I. INTRODUCTION

The presence of closed magnetic field lines poses diffi-
culties for the computation of three-dimensional magneto-
hydrodynamic (MHD) equilibria,! and even raises ques-
tions about the existence of such equilibria.”* On rational
magnetic surfaces (i.e., surfaces having a rational value of
the rotational transform) every field line closes on itself.
This leads to an apparent singularity in the pressure-driven
current at such a surface. In a more realistic treatment of
three-dimensional fields, the rational surfaces break up to
form islands. Questions about the nature of the equilibrium
solution near a rational surface are replaced by questions
about the behavior in the neighborhood of a separatrix. The
rotational transform becomes rational there, and the x lines
are closed magnetic field lines. In this paper we calculate
explicitly the limiting behavior of a general three-dimension-
al MHD equilibrium solution as it approaches a separatrix.
Our analysis assumes a nonzero toroidal field at the separa-
trix. In light of our solution, we examine some of the issues
concerning the existence of three-dimensional MHD equi-
libria. We also discuss some implications for the numerical
computation of such equilibria.

Magnetohydrodynamic equilibria near a separatrix
have been calculated analytically for a simple model field,’
and for narrow islands at low beta.%’ The analysis of this
paper is based on the observation that the behavior of the
MHD equilibrium near a separatrix is dominated by the X
point, so that considerable information about the leading-
order behavior can be extracted quite generally, without
making any assumptions about island width or beta.

The plasma equilibrium equation, assuming a scalar
pressure, is

iXB=Vp, (1)
with
VxXB=j. 2)

In the absence of a pressure gradient, the equilibrium equa-
tion implies only that the current density is aligned with the
magnetic field. No particular difficulties arise at closed mag-
netic field lines. Adding a finite pressure gradient produces a
component of the current density perpendicular to the mag-
netic field,

i, =BVp/B> 3)
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The component of the current density parallel to B must now
adjust itself to satisfy the constraint that the total current
density is divergence-free. That is not possible on a rational
magnetic surface unless ¢ dI /B is constant on the surface,
where the integral is evaluated along the closed field lines.
This condition is generally not satisfied except in the pres-
ence of a symmetry such as axisymmetry. If ¢ dI /B is not
constant on a rational surface, and if Vp does not vanish, the
magnitude of the parallel current density that must be added
to make the total current divergence-free becomes infinitely
large as the rational surface is approached.

In a more realistic treatment of three-dimensional mag-
netic fields, the rational surfaces are replaced by chains of
magnetic islands. We will see that the singular nature of the
equilibrium solutions does not persist in the neighborhood of
the separatrices. A finite pressure gradient at the separatrix
does not give a singular current.

Figure 1 is a sketch of the neighborhood of the x line.
(The x line intersects the plane of the picture at only one
point, so it is, of course, represented as an X point.) The
immediate neighborhood of the separatrix is stochastic, and
therefore has a flat pressure profile. Outside this narrow sto-
chastic layer is the region of interest, which has good flux
surfaces, and is therefore capable of supporting a pressure
gradient.

We will use magnetic coordinates to solve for the pres-
sure-driven current near the separatrix. In Sec. II we calcu-
late the magnetic coordinates in the neighborhood of the x
line by an expansion about the x line. The q profile is calcu-
lated in Sec. III. The calculation of the pressure-driven cur-
rent is completed in Sec. IV. In Sec. V we calculate the self-

separatrix
stochastic region
X point

flux surface

FIG. 1. Magnetic geometry in the neighborhood of an X point.
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consistent constraint that comes out of Ampére’s law.
Finally, the significance of the results is discussed in Sec. VI.

Several appendices provide additional detail and consid-
er the solutions in particular limits. Appendix A provides
some details of the algebra involved in the calculation of the
©® magnetic coordinate near the x line. In Appendix B we
verify that we recover the proper expression for the magnetic
coordinates near a narrow island. In Appendix C, we use the
Grad-Shafranov equation to give an alternative derivation
of the constraint due to Ampére’s law for helical and cylin-
drical systems. Appendix D gives expressions for the metric
elements of the helical-hyperbolic coordinate system adopt-
ed in Sec. II.

Il. MAGNETIC COORDINATES NEAR AN x LINE

In Sec. IV it will be seen that the equations determining
the pressure-driven current simplify greatly in magnetic co-
ordinates. In this section we obtain the solution for the mag-
netic coordinates near the x line. The key to our analytic
solution for the magnetic coordinates in the neighborhood of
the x line is a transformation to a helical-hyperbolic coordi-
nate system, in which the equations determining the magnet-
ic coordinates simplify.

The neighborhood of the x line is shown in Fig. 1. The x
line closes on itself after traversing the torus M times in the
toroidal direction and N times in the poloidal direction.
(This is the case, for example, if there is an island due to a
resonant perturbation having poloidal mode number M and
toroidal mode number N.) The trajectory of the x line may
be represented in cylindrical coordinates (R, ¢, Z) as

R=R.($), Z=Z,(§).

We normalize ¢ to go from O to 27 in M toroidal circuits.
This preserves the single-valuedness of R, and Z, , and it will
be a convenient normalization when we Fourier decompose
in the ¢ direction.

In the region of good flux surfaces, the magnetic field
can be written in the form®®

B=VY,XVO + VO XVY, (4)

where ® and ® are poloidal and toroidal angles, respective-
ly, and ¥, is a function only of W. A set of coordinates (¥, ®,
®) in which the magnetic field assumes this canonical form
is called “magnetic coordinates.”” The flux surface label ¥,
corresponds to the toroidal flux enclosed by that surface di-
vided by 2. Similarly, 27V corresponds to the flux through
a ribbon that coincides with a fixed value of ® and which is
bounded on one edge by the magnetic axis and on the other
edge by the corresponding flux surface. Equation (4) does
not uniquely specify the angles. One of the angles can be
specified for our convenience. We take ® to coincide with
the cylindrical coordinate ¢, with ¢ normalized as above.

Even after specifying ® = ¢, ® is not uniquely deter-
mined by Eq. (4). The form of the equation is preserved by a
transformation to

® =0+ (j/M)g,
V=V4 (j/M)Y,,

where j is an arbitrary integer. The coefficient of the term
linear in ¢ has been chosen to preserve the single-valuedness
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of @ in the toroidal direction. (Increasing ¢ by 2Mn in-
creases ® by 2j7.) In the following it will be assumed that ¥
is analytic in the neighborhood of the x line. We will see that
¥ is then uniquely determined by Eq. (4), asis ®. Our ® will
wind around the torus at the same average rate as the x line,
corresponding to what is often called a “helical coordinate
system.” We will therefore denote ¥ from now on with a
subscript A, corresponding to the helical flux ¥,.

To understand the analyticity properties of the flux
functions in the neighborhood of the x line, consider the flux
through an arbitrary ribbon extending from the magnetic
axis to the separatrix. If the outer edge of the ribbon winds
around the magnetic axis at a rate different from that of the x
line, it must intersect and cross the x line, and must have
corners at those intersections. On the other hand, if the edge
of the ribbon winds around with the same average pitch as
that of the x line it can avoid crossing the x line, and is then
smooth. The flux through this ribbon is the helical flux. This
argument shows why it is reasonable that our requirement
that ¥ be analytic will uniquely specify ¥ = ¥,.

Assuming that ¥, is an analytic function of position, its
expansion about the x line takes the form

¥, =¥,z ($)(R—R,)?/2
+ ¥z (D(R—-RWNZ-2Z,)
+¥,22(Z - Z,)%/2, (5)

where the intersection of two flux surfaces at the x line im-
plies that terms linear in R — R, and Z — Z, vanish, and
where the value of ¥, on the x line can be taken to be zero
without affecting the magnetic field. We apply a series of
coordinate transformations that put us in a helical-hyperbo-
lic coordinate system and simplify this expression. First, we
shift our coordinate axis in the R-Z plane to the x line and
transform away the cross term in the Taylor expansion by a
rotation of the coordinates in the R-Z plane. Thus

Vv, =E£Yd* —n/c, (6)
where a and ¢ are functions of ¢, and

R = £ cos(y) + 9 sin(y) + R,,

Z=mncos(y) —E&sin(y) + Z,.
In these expressions y(¢) is an angle determined by the sec-
ond derivatives of W,, at the x line, and the coefficients a(¢)
and c(¢) are similarly determined by these derivatives.

Finally, we apply a transformation to hyperbolic coordi-
nates,

€))

£=apcosh(a), n=cpsinh(a), (8)
so that W, assumes the simple form
\Ilh =p2. (9)

To leading order, the surfaces of constant p coincide with the
flux surfaces.

From Egs. (6) and (7), it is seen that g and c are deter-
mined up to a multiplicative constant by the shape of the flux
surfaces. The multiplicative constant is determined by the
magnetic field through Eq. (4). Having assumed that ¥, is
an analytic function in the neighborhood of the X point, we
have been led to a unique specification of ¥, in terms of B.
We will later see that ¥, corresponds to the helical flux.
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We use Egs. (4) and (9) to evaluate B¢ and B ® in the
(p,a,¢) coordinate system. This gives two partial differen-
tial equations, which together determine the magnetic coor-
dinate ®. The details of this calculation are given in Appen-
dix A. The solution is

®=-—1—(¢+iracRB“d¢’—lacBoa), (10)
qx 2 Jo 2
where ¢, =d¥,/dV¥, is the safety factor, and where we write
R BV¢ = B,(¢) to lowest order near the x line.

The multivalued piece of ® must satisfy the condition
that ® changes by a multiple of 27 when ¢ increases by 2.
This gives a constraint-on B *(¢):

21
f acRBd¢ =4m(q, I — 1),
0

for some integer /. Since the left-hand side is independent of
p, I must be zero. (In the next section it will be seen that g, is
a logarithmically singular function of p in the neighborhood
of the separatrix.) The constraint reduces to

27
f acRB° d¢ = — 4m. (11)

[}
For the special cases of axisymmeétry or helical symmetry,
the integrand is independent of ¢ and we obtain an expres-
sion for B§,

B3 = —2/(acR). (12)

In Appendix B we verify that our solution for the mag-
netic coordinate @ corresponds to the known solution in the
narrow island limit.

We will see in the next section that g, — o as we ap-
proach the separatrix, and that & can be of the same order as
g, It follows that the term containing a dominates in Eq.
(10).

lll. DETERMINATION OF ¢

To deduce g, from our expression for ® we need only
impose the condition that ® goes from O to 27 in one poloidal
circuit on any flux surface. This may seem surprising since
g5 is a global characteristic of a flux surface, while the expan-
sion of the previous section was valid only in the neighbor-
hood of the x line. Near the separatrix, however, almost all
the variation in ® is occurring near the x line.

We express © in terms of £ and ¥,,. To do that, a is first
expressed in terms of £ and 7,

a = tanh~'(na/éc) = } In[ (€c + na)/(éc — na) ],
where it has been assumed (without loss of generality) that
we are working in a quadrant where ¥,, > 0. For determining
the boundary condition on ®, we are interested in the limit
where £%/a*> ¥, and 9%/c*> ¥,. We use Eq. (6) to elimi-
nate £ in terms of  and ¥, , and retain only the leading-order
term in this limit,

a= +In(2¢ /a\[¥),). (13)
For a fixed ¢, the change in ® in going from — £ to £is

A® = (acBy/q)In(2¢ /a\[¥,).

This expression shows that in the limit, as we approach the
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separatrix, nearly all the variation of ® occurs near the x line.

The intersection of any flux surface with a fixed ¢ plane
defines a closed loop. Following the loop around once de-
fines a single poloidal transit on that flux surface. The nor-
malization of the expression for ® must take into account the
fact that in one poloidal transit on a fixed flux surface near
the separatrix the same x line may be encountered more than
once. The x line intersects the fixed ¢ plane in a finite set
of X points. We let n, denote the number of those X points
that we pass near in one poloidal transit. If the flux surface
does not enclose the magnetic axis (the surface is in the mag-
netic island), the x line is encountered twice (n, = 2). If the
flux surface does enclose the magnetic axis, n, = N (where
N was defined at the beginning of Sec. IT). We do not consid-
er here the degenerate case where several independent x lines
lie on the same separatrix.

The total change in ® in one poloidal transit, to leading
order in the distance from the separatrix, is

A® = (n,Byac/q)In(1/,/¥,). (14)

Requiring that this total change in ® be equal to 27, we
determine the limiting behavior of g, for small ¥,,

gn = (n,Boac/m)In(1/,[¥,). (15)

Having Taylor expanded ¥, near the x line, we have
obtained unique, explicit expressions for ® near the x line
and for g, near the separatrix. From the fact that g, — « as
we approach the separatrix, it is clear that we are in a helical
coordinate system, as claimed in the previous section.

In Appendix B we verify that our solution for g, corre-
sponds to the known solution in the narrow island limit.

IV. THE CURRENT

In this section we calculate the current in the neighbor-
hood of the separatrix.

Equations (1) and (2) imply that the current is diver-
gence-free and satisfies V¥, = 0. It follows that j can be
written in magnetic coordinates in the form

X , a
1= (I (¥,) —a—(:;‘) VW, XVO

+(55 -2 ) voxve,. (16)
Here v is a periodic function of ® and ¢, while
I'(V,)=dI/d¥, andg'(V,) = dg/d¥, are the profiles of
the net toroidal and poloidal current, respectively. Substitut-
ing Eq. (16) into Eq. (1) gives a magnetic differential equa-
tion which determines v,

BVy =p' + g'BV¢ + I'B-VO,

where p'(V, ) =dp/dV¥,,.

Equations (16) and (17) hold in any flux-coordinate
system, that is, in any coordinate system in which the radial
coordinate labels the flux surfaces. In a general coordinate
system of this type, the representation of the magnetic field is
similar to that of expression (4), except that terms analo-
gous to those containing v in Eq. (16) must be added. In a
magnetic coordinate system the field lines are straight
(B-V®/B-V@ is a function only of ¥, ). As a consequence,

(1m
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derivatives along the field lines assume a simple form,

= (e ).

where
o1 9.09)
d(x,y,2)
is the Jacobian of the transformation from magnetic coordi-
nates to Cartesian coordinates. Fourier decomposition in a

magnetic coordinate system reduces magnetic differential
equations to trivially soluble algebraic equations. Writing

/(\Ph’®,¢) = Z /n,m e_i("¢—m®)

allows the solution to Eq. (17) to be expressed in terms of the
Fourier components of the Jacobian,

- dp ’ i/n,m
d‘ljh n,m (nq;, —m)

=V¥, XVOV4=BVO (18)

(19)

— i(ng — m®)
’

e (20)
where the prime indicates that the m = n = 0 term is omit-
ted. The n = m = 0 component of Eq. (17) gives a relation
between g', /', and p/,

PFoo+8a+1'=0. (21)
Equation (21) is an averaged equilibrium equation on the
flux surface.

Equations (16) and (20) determine the equilibrium
current, once the magnetic coordinates have been found.
Since g, appears in the denominator of Eq. (20), there is no
problem as we approach the separatrix.

It follows from g, — o as we approach the separatrix
that the n#0 terms in the solution for v, Eq. (20), become
small there. The ¢ derivative of v is therefore negligibly small
relative to the @ derivative. Retaining only the n = 0 terms
in Eq. (20), the m’s cancel in the @ derivative, giving

a
%—p(%)[/n_o(@) Fools

where

/n:O(\P.‘n@) =E/O,m 8' ©

is the average of the Jacobian over ¢ at fixed values of ® and
‘I‘h .

Figure 2 is a sketch of the behavior of # , _ as a func-
tion of the magnetic coordinate ® for n, = 1. (We first focus
on n, =1, and then generalize to arbitrary n_.) On flux

(22)

(23)

1 FIG. 2. A sketch of the behavior

: of F,_, as a function of ® for
n, = 1. Almost all of the vari-
ation occurs in the neighborhood

of @ =
0 e — T
E=E, E=E,+e
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surfaces near the separatrix ® varies very rapidly near the x
line, while # displays no such singular behavior. It follows
that if we express ¢, _, as a function of ®, almost all of the
variation occurs in the neighborhood of ® = 7 (forn, = 1),
giving the general form shown in Fig. 2. The dashed vertical
line indicates the domain of validity of our expansion around
the x line. (The expansion is valid to the left of the dashed
line.) Our expansion is valid for £ /7, < €€ 1, where r, mea-
sures the poloidal scale length of the flux surface and € is a
small number. Letting ® = 7 — 50, we find from Eqs

(A4), (A6), and (13) that this holds for

T Ine

> ———m—.
2 In(1/,/¥,)
Near the separatrix, £ oo = 3”7 , o d© is well approxi-
mated by 27,7, _, (® = 0), that is, by the value of £, _,
on the x line. Recall that ¢ = ¢,/B-V¢. We therefore have

2
F oo = an (‘1’;,) f R (¢)
Bo(¢)
Foran, > 1, the average over ® is again dominated by the
x line. Equation (24) still holds.
Near the separatrix, the current density is given by

j={I'(‘I’h) —P,(\ph)[/rx:O(@)
— £ oo ]IV, XVO — g'(¥, )V XVY,. (25)

The fact that V¥, is nonvanishing away from the x line im-
plies that p’ (¥, ) cannot go to infinity at the separatrix, so
the pressure-driven current remains finite there. The pres-
sure-driven current vanishes on the x line, but may be finite
elsewhere on the separatrix. This is consistent with the re-
sults of Ref. 5.

(24)

V. AMPERE’S LAW

In this section we complete our description of the equi-
librium in the neighborhood of the separatrix by using Am-
peére’s law to obtain a self-consistent relation between the
parameters in our equilibrium solution. To motivate the
work of this section, consider first the cylindrically symmet-
ric case, where all the parameters are independent of ¢. The
poloidal components of Ampére’s law involve derivatives of
B*withrespect to R and Z (the Cartesian coordinates in the
poloidal plane). These derivatives are not determined by the
lowest-order piece of B %, which is a constant. The poloidal
components of Ampere’s law therefore serve only to deter-
mine the next higher-order piece of B #. The ¢ component of
Ampere’s law for the cylindrically symmetric case, on the
other hand, gives a relation between the derivatives of the
poloidal components of the magnetic field and the current at
the x line. This is the relation that we seek. For a cylindrical-
ly symmetric separatrix in a vacuum field, for example, it
gives the well-known constraint that the separatrix comes
into the X point at right angles (a = ¢). Similarly, for the
helically symmetric case, the component of Ampére’s law
along the helix gives a constraint on the equilibrium solution
near an x line. (The helical case is solved in Appendix C.)
For the general case, we find that the covariant ¢ component
of Ampere’s law gives such a constraint.
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The curl of B in our (p,a,4) coordinate system is
Ji= (va)lzéJlkaJ(gk,Bl), (26)
where € /¥ is the antisymmetric permutation tensor, with

€7%¢ =1/ /", and where 9, is the partial derivative with
respect to the j coordinate. The covariant metric tensor is
(27)
The metric elements are evaluated using Egs. (7) and (8)
and are given in Appendix D.

The evaluation of the lowest-order piece of each of the
components of Eq. (26) individually requires the evaluation
of p and a derivatives of the order p piece of B ?. If we form

(28)

the coefficients of the order p terms of B  cancel, and we are
left with an expression which, to lowest order, involves only
the lowest-order pieces of the magnetic field. To carry out
this computation it is convenient to first express the metric
elements in a form that explicitly displays that p dependence,

gi; = d;xd ;x.

Jy =84t

8i; =8 +pgij’ +pg}

Substituting this form into Egs. (26) and (28), we can di-
rectly evaluate the p derivatives and determine the lowest-
order term in p,

#73, =pB (288

a 8
(0) (1 (0) (1)
—_— —_ + —_—

g¢¢ a gp¢ g¢p a g¢¢

d
~ 80 5 alh + 8 5 8 — st

a
+ B"(2 Do) _ g0) )
a
D =g — (62)?). 29

In this expression terms that are known to be zero from our
evaluation of the metric elements have been neglected.

Finally, we substitute our explicit expressions for the
metric elements into Eq. (29) to obtain the desired relation.
A large amount of algebra is involved, for which we have
used MACSYMA.'® There are many cancellations. The final
result is

Al =42 —a)(2R2 + R+ Z2)
+3(& + ) (R2 — Z2)cos(2y)
— (@ + AR, Z, sin(2y) B
+{ac[R,Z, — Z,R,
—HR2+Z2+2RY)]
+4(aé — ca) (R} — Z2)sin(2y)
+ (aé — ca)R, Z, cos(2y)}B*. (30)

Taking the helical limit of Eq. (30), and using Eq. (12),
recovers the constraint for the helical case, Eq. (C3). In the
cylindrical limit all of the ¢ derivatives vanish, and the right-
hand side reduces to R2(c* — @*)B*°. In particular, for a
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cylindrical geometry with vanishing current at the X point
we recover the well-known condition that the flux surfaces
must cross at right angles.

VI. DISCUSSION

The derivative of the helical flux with respect to the to-
roidal flux, d¥,/d¥, = 1/q,, vanishes at a rational magnet-
ic surface. On an unbroken rational magnetic surface, the
gradient of the helical flux is zero everywhere. If the gradient
of the pressure is finite at such a surface, dp/dV¥, is singular
there (it goes like g, ). It follows from Egs. (16) and (20)
that the current is singular, unless the resonant Fourier com-
ponents of the Jacobian vanish there. Vanishing of the reso-
nant Fourier components of the Jacobian on a rational sur-
face is equivalent to $d/ /B being constant on the surface,
where the integral is evaluated around a closed field line.
This condition is generally not satisfied. There have been a
number of discussions of this problem (see, for example, the
discussion in Ref. 3). It has even been suggested that this
problem implies that three-dimensional equilibria do not ex-
ist.?

In a more realistic treatment of three-dimensional
fields, the rational surfaces break up to form islands. The
infinite set of closed lines of the rational surface is replaced
by a finite set of closed lines (the x lines and o lines). On the
separatrix, the gradient of ¥, vanishes only at the x lines. A
finite value of Vp on the separatrix (away from the x line)
now implies that dp/d¥, is finite. Since p must be constant
on the flux surfaces (i.e., p must be a function of ¥, alone), it
follows that Vp must vanish at the x line. Our analysis shows
that the pressure-driven current is well behaved in the neigh-
borhood of the separatrix and, in fact, vanishes at the x line.

These results suggest that MHD equilibrium codes that
allow island formation will be, at least in some ways, better
behaved than those that assume good flux surfaces. The con-
straint that flux surfaces can be preserved forces the appear-
ance of singular pressure-driven currents, unless artificial
flat spots are placed in the pressure profile at the low-order
rational surfaces. This effect is absent in a more realistic
treatment. Even for codes that do allow island formation,
however, accuracy can be expected to deteriorate in the
neighborhood of a separatrix. The shape of the flux surfaces
has a singularity, coming into a corner at the x line. Flux
surface averages near the separatrix are dominated by the x
line. The Pfirsch—Schliiter current is forced to zero near the x
line. Our explicit analytical solution could be used by equi-
librium codes to improve their accuracy in the neighborhood
of the separatrix, much as codes now often make use of ex-
pansions around.the magnetic axis to improve their treat-
ment of equilibria there. Codes using magnetic coordinates
could directly incorporate our analytical solution for these
coordinates near an x line, where the coordinates are singu-
lar. Magnetic coordinates are presently used for both equi-
librium*!! and transport!>!? calculations.

Our solution shows that pressure-driven currents are
strongly modified by the presence of a separatrix. This can be
expected to be an important effect in the determination of
self-consistent three-dimensional stellarator equilibria, and
in the calculation of saturated finite-beta tearing modes.
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APPENDIX A: MAGNETIC © COORDINATE NEAR THE x
LINE

In this appendix, we give the details of the algebra for
the calculation of the magnetic coordinate ® near the x line.
We first consider the toroidal component of the magnetic
field. Equations (4) and (9) give

2g,p{30/3
B.v¢=ﬂ(___/i), (A1)
g
where g, =dV¥,/dV¥, is the safety factor,
o _ dx 0ox
P = (VpxVaVgp) ' =T x 2. 2 A2
FP=(VpXVarVg) axaa e (A2)

is the Jacobian of the transformation from Cartesian coordi-
nates to the helical-hyperbolic (p,a,¢) coordinates, and
x = Rey + Ze, is the position vector. The transformation
equations (7) and (8) allow straightforward evaluation of
7 and give

F?= —pRac. (A3)
If we assume that the toroidal magnetic field does not vanish
onthexline, and write R B-V¢ = B,(¢) tolowest order, then

Eqgs. (A1)-(A3) determine ® up to an integration constant
as

® = —acBya/(2q,) + ©,(p,9). (A4)

The integration constant is determined in terms of B “
from the equation

1pe_pe_p=92  ps99
qr 8a a¢
This gives
3, 1  acR d
=4 B* 4+ — — (acB,) (AS)
% 4 2 24,06

Now we make use of the relation
a3

—— (acB,) =0,

e (acB,)

which states that if a flux tube is followed in the ¢ direction,
the toroidal flux through it must be conserved. (An analo-
gous expression is valid in the neighborhood of a magnetic
axis.) Another way to obtain this expression is to use the
coordinate transformations (7) and (8) to show that, as
long as the Cartesian components of B are analytic functions
of position, the leading-order piece of B * can depend on &
only through cosh(a) and sinh(a) and cannot have a de-
pendence that is linear in a. It follows that the term linear in
a in Eq. (AS5) must vanish. The same analysis also shows
that to leading order B “ is independent of p, B *~B “(¢).
Equation (AS5) therefore gives

@,=—l-(¢+ifacRB°d¢').
q’l 2 0

In this solution we have discarded a constant of integration
which is a function only of p, and which does not affect the
value of the magnetic field in Eq. (4).

(A6)
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APPENDIX B: THE PENDULUM

The magnetic field line equations for a magnetic field of
the form of Eq. (4) are Hamilton’s equations, where ¢ plays
the role of time, ¥, and ® are the canonical coordinates, and
V¥ is the Hamiltonian. Magnetic coordinates correspond to
action-angle variables. Our solution for magnetic coordi-
nates near a separatrix can therefore be checked against solu-
ble Hamiltonian systems. In particular, in the narrow island
limit we should recover the action-angle variables for a pen-
dulum. In this appendix we show that this is the case. We
derive expressions for the magnetic angle ®, and the safety
factor g of a magnetic system whose flux contours in the R-Z
plane are identical to the phase portrait of a mechanical pen-
dulum.

Let

¥, =}G(R — R,)* — H(1 + cos Z) (B1)

(G, H, R, constant) define a poloidal flux function, and
write the magnetic field in (R,Z,4) coordinates as

B =VR XVZ + V$XV¥,. (B2)

The magnetic field lines satisfy

d$¢ BV$ IR’

which are Hamilton’s equations for a mechanical system
with Hamiltonian ¥, (R,Z), canonical phase-space coordi-
nates R (“momentum”) and Z (“position”), and the angle
¢ interpreted as time. The Hamiltonian is that for the pendu-
Tum. Contours of the flux function ¥, have a separatrix con-
necting two X points, at (R=R,Z=7) and
(R =R,,Z= — ). The separatrix contour is described by
¥, = 0. Flux contours with ¥, <0 lie inside the separatrix;
contours with ¥, > 0 lie outside the separatrix.

The problem of finding magnetic coordinates for the
magnetic system defined in Eqs. (B1) and (B2) is equivalent
to the problem of finding action-angle variables for the asso-
ciated Hamiltonian. That is, a magnetic angle ®, and a mag-
netic flux function ¥,, are sought in terms of which Eq. (B2)
can be written in canonical form Eq. (4), where
v(¥,) =V¥,[R(Y,,0),Z(¥,,0)]. The magnetic field line
equations then become

L
d¢ 99’
and
O = ¢/q) + O

The derivation of action-angle variables for the pendu-
lum Hamiltonian can be found in many of the standard text-
books of classical mechanics (see, €.g., Ref. 14). Results are
conveniently expressed in terms of the parameter

k?=1+Y¥,/H). (B3)

Values of k < 1 label surfaces that lie inside the separatrix,
while values of k > 11abel surfaces that lie outside the separa-
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trix. Then

O Zk<l)=2F [sin—‘(-:: sin %)

9.
where F is the incomplete elliptic integral of the first kind,
go=1/JGH is the safety factor at the O point
(R=R,,Z=0),and

q. =F(n/2|k*)2q/7 (BS)
is the safety factor for an arbitrary surface with & < 1. Simi-
larly,

k2] , (B4)

O(Z;k>1) = (q/9. YF(Z /2|1/k?) /K, (B6)
where
g, = F(n/2|1/k?)qy/ (kmr). (B7)

The expressions for the @ and ¢ given by Eqs. (B4)-(B7)
are valid everywhere in the R-Z plane. To compare the gen-
eral results in the main body of our paper with the special-
ized model of this appendix it is necessary to expand the
exact equations (B4)-(B7) about the X points
(k= 1,Z = + ). Since the analysis for k < 1and k> 1 are
very similar, we present an outline only for the notationally
simpler case k> 1.

To calculate the safety factor in the neighborhood of the
X point, we use the well-known limiting behavior of the
complete elliptic integrals in the limit as £— 1:

F(n/2|1/k?) =log(4/kZ=1), k-17. (B8)

Substituting into (B4) and (B6), using Eq. (B3) to write k2
in terms of ¥, and identifying Eq. (B1) with Eq. (5) togive
G = 2/a? H = 2/c% easily verifies Eq. (15) of the main text.
[In Eq. (15) we must set n, =2 for k<1 and n, =1 for
k>1.]

The limiting behavior of the magnetic angle is slightly
more tricky. For this, in addition to using Eq. (B8), we must
use an expansion of the incomplete elliptic integrals about
Z = 7 and k = 1. To this end, we use the result'®

F(Z /2|1/k?) = F(n/2|1/k?) — F(¢ |1/k%), (BY)
where
cos(a)tan(Z /2)tan(§) =1 (B10)

and sin’(a) = 1/k?. Since k=1, F({ |k ?) can be replaced,

approximately, by log+/(1+sin¢)/(1 —sinf), where
sin (&) is obtained from rearranging Eq. (B10) in the form
k?sin*(86Z /2)

[(k2—1) +sin2(6Z/2)]

On the right-hand side, we use the small argument approxi-
mation to the sine function, write k 2 in terms of ¥,, using Eq.
(B3), and expand W, about the X point as
¥, =~ (8R)*/a* — (8Z)?/c*. Pulling these pieces together
obtains

F(¢ k) =log V[c(6R) + a(6Z)1/[c(6R) — a(6Z)] .
(B11)

The leading-order behavior of the magnetic angle in the vi-
cinity of the X point obtained in the main text is verified by
direct substitution of Eqs. (B8), (B9), and (B11) into Eq.
(B4).

sin?(¢§) =
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APPENDIX C: HELICAL AND CYLINDRICAL SYMMETRY

In this appendix we use the Grad—Shafranov equation to
give an alternative derivation of the constraint due to Am-
pere’s law for helical and cylindrical systems. We adopt the
notation of Ref. 16 for the magnetic field in helical geometry.
In terms of cylindrical coordinates (r,6,z) we define the vari-
able u=10 — hz and the vector

u= Iz 4 hrd)/(* + 1),

where / and 4 are given constants. All quantities are taken to
be functions of 7 and u. The magnetic field can be expressed
in terms of two arbitrary functions, f(r,u) and F(r,u),

B =f(r,u)u +uXVF(ru).

It follows that Ampeére’s law may be written

124+ K27 2hl )
J=|—rn" F4 ——u— V(—-1),
( > +12+h2r2f u+uXxV(—f)
. (Cl)
where
2
. d r d d (C2)

"w R a
In this formalism, F is a helical flux function (it is pro-
portional to our ¥,, but not equal to it). To apply the for-
malism to a separatrix, we take F to be of the same form as
the ¥, of Egs. (6) and (7), with a—4 and ¢—C. In this
geometry, R and Z are Cartesian coordinates,

$=z

R —r, =rcos(@) —r, cos{b,),

Z—2Z, =rsin(0) —r, sin(8,),
where r_ is the (z independent) radius of the x line, and
8, = hz/! is the angular location of the x line as a function of
z. (In dropping an additive constant from the expression for

6. we have chosen our coordinate origin in the z direction. )
It follows that

E=rcos(@ +y) —r, cos(6, +7),
n=rsin(f + y) —r, sin(0, + 7).

For a helically symmetric field y takes the form y = — Az/!/
+ ¥o, Where 7, is a constant.

Substituting our expression for F into Eqgs. (C1) and
(C2), we find

. 1 h’r,
Ju = — (—F + L) ——cos(2%,)

uu c?/ I?
1 1\ Ak +27
+(7“Ef) —r
2hi
+-I—ZT;‘2—rz-ﬁ (C3)

where the A and Cin this expression differ from thea and cin
the rest of the paper only by an overall normalization. Equa-
tion (C3) is the desired constraint. If weset/=land 2 =0,
we obtain the equation for cylindrical symmetry. In particu-
lar, for a vacuum field ( J = 0) we obtain the well-known
constraint that 4 = C for a separatrix with cylindrical sym-
metry.
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APPENDIX D: METRIC ELEMENTS

We calculate the elements of the covariant metric tensor
by substituting Eqs. (7) and (8) into Eq. (27). The results
are as follows:

g, = cosh(2a) (¢ + a*)/2 + (a* — *)/2,

8o = Sinh(2a) (2 + ad*)p/2,

8,4 = [sinh(a)sin(y)c + cosh(a)cos(y)a]R,
— [cosh(a)sin(y)a — sinh(a)cos(y)c]Z,
+ [cosh(2a) (cc + aa) + aa — cclp/2,

8aa = Lcosh(2a) (¢ + @*) + & — a*1p?/2,

8.s =pllcosh(a)sin(y)e + sinh(a)cos(y)alR,
— [sinh(a)sin(y)a — cosh(a)cos(¥)c]Z,}
+ p*[sinh(2a) (c¢ + aa)/2 — yac],

8 =RL+Z%L+R;
+ 2p{[ — cosh(a)sin(y)ya

+ sinh(a)cos(y)yc
+ ¢sinh(a)sin(y) + a cosh(a)cos(y)]Rx
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— [sinh(e)sin(y)$c + cosh(a)cos(y)7a
+ a cosh(a)sin(y) — ¢ sinh(a)cos(y)1Z, }.
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