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SELF-CONSISTENT ELASTIC MODULI OF A CRACKED SOLID

Frank S. Henyey and Neil Pomphrey
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Abstract. A self-consistent theory for the
determination of elastic moduli of cracked solids
is presented, and worked out for an isotropic dis-
tribution of cracks. A missing ingredient of the
previous theory of O'Connell and Budiansky is the
correct accounting of crack interaction energy.
The new theory leads to a set of differential
equations for the effective elastic moduli which
are easily solved. The solutions always lie with-
in the physical range, and show that the influence
of the cracks on the effective moduli is consider-
ably less than has been previously calculated.

Introduction

We consider the self-consistent determination
of the effective elastic moduli of a homogeneous
rock "matrix" within which is embedded a random
distribution of thin ellipsoidal cracks (with
semiaxes a > b >> c).

Early theoretical work considered solids with
a low concentration of cracks. The effect of the
cracks on elastic properties of the uncracked
solid was calculated by treating the cracks on an
individual basis. Bruggeman [1937] and Dewey
[1947] determined the elastic field of a spherical
inclusion. Eshelby [1957]determined the same for
an ellipsoidal geometry, and described how to cal-
culate the effective elastic moduli in the pres-
ence of a low density of inclusions. Walpole [1972)
performed the calculation for a sparse distribu-
tion of spheres. Garbin and Knopoff [1973,1975 ]
calculated effective elastic moduli for randomly
located, planar or randomly oriented, dry or wet
thin circular cracks (a = b, c/a = 0).

An alternative approach to these perturbation
methods was developed by Hershey [1954] and
Kréner [1958] for polycrystalline materials, and
by Hill [1965] and Budiansky [1965, 1970] for
multiphase composites. This is the "self-consist-
ent" approach. Here one approximates the elastic
field of one member of a (possibly) dense number
of inclusions by the field of an isolated inclu-
sion in an infinite isotropic medium which is
assumed to have the same elastic properties as
the composite as a whole. Clearly, the perturba-
tion results must be obtained as a limit of the
self-consistent calculations when the density of
inclusions becomes vanishingly small. On the other
hand, interactions between the inclusions are ap-
proximately taken into account, so the self-consist~-
ent method can be expected to be an improvement
over first order perturbation theory.

0'Connell and Budiansky [1974] and Budiansky
and 0'Connell [1976] pioneered the application of
self-consistent techniques to an isotropic network
of dry or wet cracks. The strain field is signifi-
cantly distorted by the presence of a crack out
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to a distance of order the width of the crack
(Length > Width >> Thickness). The volume of the
distorted strain field is therefore of order
(Width)2(Length) . The relevant expansion param-
eter ¢ is, up to a constant, the volume of the
distorted field

s

Z (Width) 2 (Length)

cracks

divided by the total volume. O'Connell and Budiansky's
results for effective S and P wave velocityand
for effective Poisson ratio, §, differ very little
from those of perturbation theory. In particular,
G leaves the physical range 0 < § < 1/2 at mod-
erate values of crack density (e=9/16 for dry,
and €=45/32 for saturated cracks). The region of
validity of the results is therefore severely
limited.

In atomic physics the method of self-consist-
ent fields was introduced by Hartree [1927] asan
accurate means of solving the wave equation. The
development of the O'Connell and Budiansky (0B)
theory for cracks is in good analogy with the
Hartree theory except for one important feature.
OB calculate the energy of a single crack, where
its interaction with other cracks is approxi-
mately taken into account by using the effective
elastic moduli. They then write the total energy
as the sum over cracks of the individual crack
energies, obtaining an equation from which the
effective moduli can be read off. It is known in
atomic physics, however, that this step is not
correct [e.g. see Schiff [1968]]; the interaction
between cracks is included in the energy of each
interacting crack. The purpose of this note is to
put in the correct relationship between the single
crack energy and the total energy. Differential
equations for the effective elastic moduli are
derived whose solutions always lie within the
physical range. (These equations were first pre-
sented by Bruner [1976], but with less discus-
sion). A significant difference is found between
the new self-consistent results and those of OB
and of perturbation theory which overestimate the
effect of the cracks.

Corrected Self-Consistent Calculation

The energy that is approximately calculated by
OB is the energy required to eliminate one crack.
If the cracks are eliminated one by one, and the
removal energy of each is added, the sum is the
total energy of the crack system. As the cracks
are being removed, the effective elastic moduli
are changed, and the removal energy of a crack is
no longer identical to what is was originally.

A single crack has energy d¢ and changes the
crack density ¢ by de. First order perturbation
theory estimates d¢ by using unperturbed elastic
moduli C: d¢/de[pT= F(C). 0'Connell and
Budiansky estimate d® by using the effective
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Fig. 1. Coefficients 1/E, 1/K, 1/G, of energy in terms of stress, normalized by their unperturbed

values (without bars). Unperturbed Poisson's ratio ¢ =

= 1/4. Our values, solid curves, intermediate

between 0'Connell and Budiansky (OB) and linear extrapolation of perturbation theory (PT).

elastic moduli € of the rock with all cracks
present: d&/de|gp=F(C). The expression which
incorporates the one-by-one feature of the correct
energy estimates d% by using the effectiveelastic
moduli C(e) when only a fraction of the cracksare
present: d&/de= F(C(e)). The left hand side of
each of these expressions can be written in terms
of the elastic moduli

dc(e) _
de PT = £10)
L - 5@ (1)
€ los
dC(e) -
e T fe@)

Each one of these has the

properties C(0) =C,

for us to calculate the functions f which appear

in Eqs. (1) and (2), since they have already been
calculated by Garbin and Knopoff and by O'Connell
and Budiansky. The differential equations (lc) are

~-16 (1—0)(02—160+l9)

o )BT et
de 423_52 \ Ll_z_g_):%_;gg ,  WET
N _7352_ . (_13)_((7)40) DRY
de ;%% ! %%E%% . WET (3)

Here X and p are understood to be functions of e,
and o = A/2()\+u) is Poisson's ratio.
For the case of dry cracks, the self-consistent

C(e) = C for the actual & of the rock. The first
two can be integrated immediately since their b :
. . . A y computer. For wet cracks, however, a simple
ight; gidew are. Independent of g; analytic solution for i,ﬂ, and derived quantities

= is available.

differential equations (3) aremost easily solved

CPT - C=¢ £(C)
) 64
. — 2 €
Cog = C = € £(O) = - 2x- V3x+l where x = —L=9°) 45 .
4x+1 ’ 2
(1-20)

The solutions of these two equations depend on
whether the energy is expressed in terms of the
strain or whether it is expressed in terms of the
stress. In the former case the C's are the Lamé
constants A and p (isotropic solid) while in the
latter case, chosen by OB, any two of 1/E, 1/K,
1/G are the C's. The corrected equation (lec), on
the other hand, is a set of differential equations
whose solutions are independent of the choice of
the C's.

For an isotropic cracked solid there is no need

(C))
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Results and Discussion

Figure 1 shows the values of Young's modulus E/E,
bulk modulus K/K and shear modulus G/G as func-
tions of crack density. Results are displayed for
both dry and wet cracks, comparing the results of
our new self-consistent calculation with those of
0'Connell and Budiansky and perturbation theory.
The new results are intermediate between those of
0B and perturbation theory. This illustrates the
fact that OB have counted the interaction energy
between a pair of cracks twice, attributing the
entire interaction energy to eachcrack separately
For interactions among more than two cracks the
overcounting is even more serious; it turns out
that the N-crack interaction energy has been over-
counted by a factor N factorial. Beyond e= 9/16
for dry cracks and e = 45/32 for wet cracks the
OB theory does not give physical results; their
energies become infinite at these critical values.

Figure 2 shows similar plots for the S and P
wave velocities, fi/u and (A+2{1)/(A+2u) respect-
ively, and for Poisson's ratio 0/ (note that §i/p
and (G/G)-1 are not equal in perturbation theory).
There is seen to be little difference between the
OB results and perturbation theory. The reason is
simply explained: The first of Egs. (2) can be
written as

CPT = C + eCf(o) .

Now consider perturbation theory for the recip-
rocal elastic modulus. This gives

--1

CRp I ¢t - ec (o). (5)

The second of Egs. (2) is

COB =C+ ECOB £(3) ,

so that

Cop = ©/ (L - £(®) - (6)

If the function f were independent of o, Egs. (5)
and (6) would imply that (Cgp)-1 = (E'l)pT. The
true f is actually a weak function of ¢ so that
(603)‘1 = (C‘l)PT. Hence the small difference
between the 0'Connell and Budiansky results for
the Lamé constants (and derived quantities) and
perturbation theory. When compared with the new
self-consistent results, the previous theories
are seen to severelyoverestimate the influence of
cracks. In particular, the new Poisson's ratio
never leaves the physical range 0 < o < 1/2, yet
sensibly approach the boundaries of this range as
the cracks become infinitely dense. See, also,
Bruner [1976]

The remote sensing of rock fractures by seismic
techniques requires knowledge of the influence of
crack parameters on the elastic properties of
solid media. The self-consistent theory presented
in this paper is one step in this direction. The
necessity of applying our considerations to other
cases, such as polycrystalline materials, is an
open question.
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