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This paper reviews the nonlinear interaction calculations for the internal gravity wave field in the
deep ocean. The nonlinear interactions are a principal part of the dynamics of internal waves and
are an important link in the overall energy cascade from large to small scales. Four approaches
have been taken for their analysis: the evaluation of the transfer integral describing weakly and
resonantly interacting waves, the application of closure hypotheses from turbulence theories to
more strongly interacting waves, the integration of the eikonal or ray equations describing the pro-
pagation of small-scale internal waves in a background of large—scale internal waves, and the
direct numerical sirhulation of the basic hydrodynamic equations of motion. The weak resonant
interaction calculations Have provided most of the conventional wisdom. Specific interaction
processes and their role in shaping the internal wave spectrum have been unveiled and a
comprehensive inertial range theory developed. The range of validity of the resonant interaction
approximation, however, is not known and must be seriously doubted for high—wave number,
hlgh—frequency waves. The turbulence closure calculations and the direct numerical modeling are
not yet in a state to be directly applicable to the oceanic internal wave field. The closure models
are too complex and rest on conjectures that are not demonstrably justified. Numerical modeling
can treat strongly interacting waves and buoyant turbulence, but is severely limited by finite com-
puter resolutions. Extensive suites of experiments have only been carried out for two—dimensional
flows. The eikonal calculations provide an efficient and versatile tool to study the interaction of
small-scale internal waves, but it is not clear to what extent the scale—separated interactions with
larger—scale internal waves compete with and might be overwhelmed by interactions among like
scales. The major shortcoming of all four approaches is that they neglect the interaction with the
vortical (= potential vorticity carrying) mode of motion that must be expected to exist in addition
to internal waves at small scales. This interaction is intrinsically neglected in all Lagrangian—based
studies and in the non—rotating two—dimensional simulations. The most promising approach for
the future that can handle both arbitrarily strong interactions and the interaction with the vortical
mode is numericai modeling once the resolution problem is overcome.
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In this article we review the present knowledge of non-
linear interactions among -oceanic internal gravity waves.
Internal gravity waves arise in a stably stratified ocean
through the restoring force of gravity on water particles
displaced from their equilibrium position. In a rotating
system internal waves have frequencies between the iner-
tial frequency f and the Brunt—Viisdld or buoyancy fre-
quency N. Internal waves are found everywhere in the
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ocean. They represent a random superposition of many
waves with different amplitudes, wave numbers, and fre-
quencies. Typical velocities are about 5 cm s™! and typical
vertical displacements are about 7 m. The horizontal
wavelengths range from a few meters to a few tens of
kilometers, and the vertical wavelengths from about one
meter to about one kilometer.

Internal waves are studied for a variety of reasons.
First, they account for a significant fraction of the
observed variability in the ocean. This alone is sufficient
reason. Internal waves are also important for a variety of
applied problems. They advect and disperse chemical and
biological tracers le.g., Garrett, 1979; Young et al., 1982]
and affect the transmission of sound le.g., Flatté et al.,
1979]. The main reason for the study of internal waves is,
however, that they are suspected to play an important role
in the dynamics of the ocean, especially in affecting the
large—scale general circulation and in providing a link in
the presumed energy cascade from large to small scales.

Internal waves transfer momentum and hence exert a
stress on larger—scale motions [e.g., Miiller, 1976]. Inter-
nal waves also cause mixing by sporadic overturning and
breaking le.g., Garrett and Munk, 1972a}. The full under-
standing of these transfer and mixing processes and their
proper parameterization might be ‘essential for our under-
standing of the general circulation. Gargert [1984] gives
an example of the possible sensitivity of the general circu-
lation to subtle changes in small-scale mixing: the merid-
ional circulation in a simple advective diffusive model of
the thermohaline circulation is reversed when a constant
mixing coefficient is replaced by one increasing with depth.

The scales of internal waves lie between the planetary
scales where contrasts in the oceanic velocity and density
field are generated. by the atmosphere and the microscales
where these contrasts are dissipated by molecular
processes. It is a central oceanographic problem to under-
stand how energy (the variance of the velocity and density
field) and enstrophy (the variance of the potential vorticity
field) are cascaded from the large generation down to the
small dissipation scales. Internal waves might provide an
important link in this energy cascade, since they have the

-unique ability to convert two—dimensional motions that
are prevalent at large scales to three—dimensional motions
that are prevalent at small scales.

To understand how internal waves affect the general cir-
culation and how they cascade energy from large to small
scales, one has to study their dynamics. This is a wide
and complicated field. It involves the study of generation
and dissipation mechanisms, of nonlinear interactions and
other internal transfer processes, and of the forces that
internal waves exert on their environment [Miiller and
Oibers, 1975]. The nonlinear interactions among internal
waves are due to the nonlinear self—advection of momen-
tum and buoyancy. This advection redistributes energy

and momentum among different wave components, -

without changing the total energy and momentum. The
nonlinear interactions are assumed to play a major role in
the dynamics. They are thought to be responsible for the
universal shape and level of the observed internal wave
spectrum and for the rapid relaxation of distorted spectra
toward the universal form. Deviations from the universal
spectrum are only found at the equator, near seamounts,
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and in submarine canyons [Wunsch, 1976; Wunsch and
Webb, 1979], near the surface [Roth et al, 1981], and at
the critical frequency over sloping bottom topography
[Eriksen, 1982]. The deviations near seamounts become
inconspicuous at very short distances and the enhance-
ment of the spectrum at the critical frequency disappears
within a few hundred meters off the bottom, suggesting a
rapid, nonlinear recovery of the spectrum to an equili-
brium form. For these reasons nonlinear interactions
have been studied extensively and an impressive amount
of knowledge about their strength, character, and role has
emerged, which we will review in this paper.

Internal redistribution by nonlinear interaction is only
one aspect of the dynamics of internal waves. We also
need to understand the generation and dissipation
processes and the other redistribution processes. Here the
state of affairs is somewhat disconcerting. There exists a
large variety of possible generation mechanisms: direct
atmospheric forcing by fluctuations in the wind stress,
buoyancy flux or pressure, generation by surface waves,
by the surface tide interacting with bottom topography, by
the mean current interacting with bottom topography, by
instabilities of the mean current, and by wave—mean flow
interaction [e.g., Thorpe, 1975; Miiller and Olbers, 1975].
Some correspondence has been observed between the sur-
face wind and surface wave field and the intensity of the
upper ocean internal wave field le.g., Briscoe, 1983). Also,
the wind field is clearly responsible for the large—scale,
near—inertial frequency waves in the upper ocean [e.g.,
D’Asaro, 1984]. The major energy source or sources of
the deep ocean internal wave field have, however, not yet
been identified.

The situation is similar for dissipation. It is generally
assumed that internal waves dissipate their energy in the
interior of the ocean by wave breaking, either by overturn-
ing or shear instability. This is suggested by direct obser-
vations of Kelvin—Helmbholtz billows [Woods, 1968] and
by the fact that most instability parameters (Richardson
number, rate of strain) are near critical le.g., Eriksen,
1978]). The breaking events are envisioned as intermittent
and localized in physical space. Other possible dissipation
mechanisms include absorption in the bottom boundary
layer [D’Asaro, 1982}, critical reflection at sloping boun-
daries [e.g., Eriksen, 1982], and absorption at critical layers
induced by the low—frequency flow [e.g., Ruddick, 1980;
Kunze and Sanford, 1984]. These sinks would be concen-
trated at particular locations and would not be spread uni-
formly throughout the ocean. Again, we do not know
where in the ocean and by what process internal waves
dissipate their energy. We know even less where the
energy sources and sinks are in wave number—frequency
space. Today, the nonlinear interaction calculations con-
stitute the major basis for the construction of the complete
dynamics.

---The strength and character of the nonlinear interactions

depends on the kinematic structure of the internal wave
field. This structure is briefly reviewed in section 2. More
exhaustive discussions can be found in the review articles
mentioned at the end of the introduction. We just provide
some basic background and the concepts needed for the
discussion of nonlinear interactions. We also point out
that we do not share some of the optimistic views given in
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other review articles. We feel that the kinematic structure
of the fluctuations in the internal wave band might not be
described adequately by the universal Garrett and Munk
[1975] model spectrum. First, internal waves do not pro-
vide a complete description of the fluctuations. Internal
waves do not carry potential vorticity. There exists
another mode of motion at internal wave scales which car-
ries potential vorticity and which we will term vortical
mode [e.g., Holloway 1981, 1983; Riley et al., 1981; Henyey
1983; Miiller, 1984]. At mesoscales the vortical mode
represents quasi—geostrophic flows. A proper distinction
between the internal gravity and vortical mode of motion
requires the measurement of potential vorticity on small
scales, which has not yet been done. The implications of
the existence of the vortical mode on the dynamics have

not been explored, for reasons given below, but we expect:

the vortical mode to .be intimately connected and
intertwined with the internal gravity mode of motion.
Second, the Garrett and Munk spectrum seems to model
fairly well the energy distribution at the large,
energy—containing scales [e.g., Miiller et al., 1978). For
most dynamical problems it is, however, the shear that is
important and it is not clear how well the Garrett and
Munk spectrum models the small, shear—containing
scales. We know that the shear is concentrated at small
vertical scales [e.g., Gargett et al., 1981] but we do not
know which mode of motion, which frequencies, and
which horizontal scales contribute to it. Additionally, the
shear is intermittent and more than a spectrum might be
required to describe the shear adequately.

Nonlinear interactions among internal waves have first
been studied for single internal waves, both theoretically
[Bretherton, 1964, Phillips, 19661 and in the laboratory
[Davis and Acrivos, 1967; Martin et al., 1972, McEwan
et al., 1972}. Calculations of the nonlinear transfers in a
many—wave environment started when Garrett and Munk
formulated their first model spectrum in 1972 [Garrett and
Munk, 1972a]. These calculations sought to determine the
strength and role of the nonlinear transfers in a realistic
spectrum and the sensitivity of the results to the form and
level of the spectrum. Equilibrium solutions were sought,
energy fluxes through the spectrum determined, and
relaxation rates calculated. It is these spectral or
many—wave calculations that we review in this paper. The
origin and the early ideas about discrete interactions are
traced in an essay by Phillips [1981].

For the many—wave calculations, four major approaches
have been taken. The first, historically, was the analysis
of weak resonant wave—wave interactions. These are dis-
cussed in section 3. To treat more strongly interacting
waves, other approaches have been developed. One is the
application of closure hypotheses developed in turbulence
theories. This approach is discussed in section 4. One of
the main results of the early studies has been that

high—wave number, high—frequency waves predominantly

interact with low—wave number, low—frequency waves.
- This scale separation has been systematically exploited in
the eikonal approach, discussed in section 5. The fourth
approach is the direct numerical simulation of the hydro-
dynamic equations of motion. This approach is described
in section 6. An alternative approach, developed by
Ostrovskiy and Pelinovskiy for the upper ocean, views the

495

internal wave field as a random ensemble of solitons [see
Miropol’skiy and Sabinin, 1977]). This approach is not dis-
cussed here.

Our review complements the recent review by Olbers
{1983] and the reviews by Gregg and Briscoe [1979), Gar-
rett and Munk [1979], Munk [1981], and Levine [1983]. A
collection of recent research papers on internal waves and
small-scale turbulence is contained in the proceedings of
the “ Aha Huliko’a Hawaiian Winter Workshop [Miiller and
Pyjalet, 1984]. A summary of the workshop is given by
D’Asaro and Miiller, [1984].

2. KINEMATIC STRUCTURE

The strength and character of nonlinear interactions
among internal gravity waves depend on the distribution
of internal wave energy in space, time, wave number, and
frequency. In this section we critically review what is -
known about this distribution for the internal wave field in
the deep, mid—latitude ocean.

Linear Eigenmodes

It is convenient to organize the observations in terms of
a linear model. Over much of the spectrum linear dynam-
ics describes the major part of the time evolution of inter-
nal waves (but, of course, the interesting part is likely to
be the deviation from linear dynamics). Moreover, the
theory of weakly nonlinear interactions is based on pertur-
bations of this model. Even when nonlinear interactions
are large, the linear model provides a basis for the expan-
sion of the variables which is independent of the measure-
ments.

There is an ambiguity in the choice of variables in which
to make the linearization. Indeed, much of the art in
solving nonlinear problems consists in finding the right
variables in which the interaction takes a simple and
uncontaminated form. In an Eulerian description the two
most common choices are the two horizontal components
u and v of the velocity and either the deviation 8p of the
density from a stably stratified background state 5 (z) or
the vertical displacement ¢ from that background state.
The variables 8p and £ are related by

&) =ple—txnl-5a0
which reduces to
- —g 9D
8p £ e 03]

in the linear limit. Note that ¢ is an Eulerian variable and
depends on x (and #). The density is a directly observable
variable, whereas the displacement is usually inferred from
density using the linear relation (2). The vertical displace-
ment is preferred as a variable when the background den-
sity exhibits strong gradients and steps (fine structure).
For weak waves on an interface the displacement is a
sinusoid in space and time whereas the density jumps
between the values above and below the interface. The
density is preferred when diffusive effects need to be
included.

Various aspects of the linear problem are independent
of the choice of the expansion variables. These include
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the dispersion relation and the relations between the linear
parts of all variables. The nonlinear parts of variables
depend very much on the choice.

In terms of (u,v,£) the linear equations of motion are

du = —¢ENE—fixu—-Vp (3a)
0.& =u-1 (3b)
V-u=20 3o)

where Z is a vertical unit vector, p the excess pressure
above the hydrostatic value divided by density, f the
Coriolis parameter, and N? = —g 5~ '35 /9z, the square of
the Brunt—Viisildi frequency. Since we are concerned
with oceanic motions we will replace the background den-
sity p (z) by a constant reference density pp whenever p (z)
appears as a coefficient, although most of the statements
in this section are also valid for systems where such a
replacement is incorrect, such as the atmosphere. The
equations (3) assume incompressibility, absence of dissi-
pative effects, the Boussinesq approximation, and f—plane
dynamics. Only the variables u, v, and ¢ are prognostic.
The vertical velocity w can be determined diagnostically
from the incompressibility condition (3¢). The pressure is
obtained from 9, (V - u) = 0 which implies

Fp = —9,END+fi-V xu (@)

and replaces the vertical momentum balance. To quad-
ratic order, the energy density takes the standard form

E = %polu2+ W+ w2+ N% (5)
Except for the vertical kinetic energy term % pow?, which
is small over most of the spectrum, this standard form
expresses the energy density in terms of the prognostic
variables u, v, and £. The potential vorticity  is defined
by

fH+m = (fi+Vxun) Viz-¢)
which becomes

T -_i-VXu-—fa,§ 6)

in the linear limit.
Assume that each variable depends on space and time

through the factor exp [i k- -x— wt)] where
k = (k. ,k,,k,) is the wave number vector and w the
(Eulerian) frequency. The equations of motion are then
converted to a set of five coupled linear algebraic equa-
tions. A solution requires the determinant to be zero.
Because there are three prognostic variables this deter-
minant is -a cubic polynomial in the frequency w. The
existence of three roots corresponds to there being three
independent modes of motion.

Two of the roots give the dispersion relation for internal
waves: -

ol = Nzkh2+f2kz2

ki + k2
where k, is the horizontal part of the wave number vector
k. The third root is w = 0 (on the f plane) and the asso-

ciated mode of motion contains potential vorticity, in con-
trast to internal wave motions which have zero potential

)]
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vorticity. These three roots are schematically sketched in
Figure 1.

In the linear theory the internal wave variables of a
given wave number are related by

3 —ikhz
ul = | ke +ifk)k | by e®x-o0
v Wk, — i fk) K,

®

where b, is a complex amplitude. The internal wave

energy density is
E = Bk klw?| b]? )]

when averaged over a wavelength or period. This normal-
ization assumes that the energy of the total wave field is
obtained by summing over all wave numbers and positive
and negative frequencies. The potential vorticity of inter-
nal waves is

7=k v—iku—ikfE=0 (10

It is the vanishing of potential vorticity, as well as the
dispersion relation, which characterizes internal waves.

The potential vorticity containing motion has variables
of a given wave number related by

- L
¢ v
u = ~ k, G e'xx (1)
v k.
The energy density averaged over a wavelength is
1 2
E= 2 k,,2+*]%k}]|Ck|2 (12)
and the potential vorticity is
2
mo=i|kd+ -A%k,’] G a3

The normalization (12) again assumes that the energy of
the total field is obtained by summing over all wave
numbers. In the rotating case, f # 0 or more exactly
f>>|Vxul], this =0 mode is in geostrophic and
hydrostatic balance, is horizontally nondivergent,
9, u+98,v=0, and satisfies the thermal wind relations
(f/NHO,u=29,¢ and (f/N)D,v= —08,¢. Itis there-
fore the usual geostrophic mode. This mode also exists in
the nonrotating case f =0, or more exactly,
f << |V xu]|. In this case the fields ¢ and hence p and
p vanish in a strictly linear approximation.” The flow con-
sists of steady horizontal vortices with an arbitrary vertical
structure. However, for such flows the linear expression
(4) for the pressure is generally not valid, even if linear

~dynamics for £, u, and v is reasonably accurate. These

flows tend to have a balance between Vp and the non-
linear advective terms. To include this case, we will refer
to this mode as the vortical mode, emphasizing its
defining property of having nonzero potential vorticity.

In the actual nonlinear case, the energy is not confined
to the dispersion curves but distributed about them, as
indicated by the fanlike curves in Figure 1. This broaden-
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wo=VNcos*  + fsin’h
tan ¢b =k, /ky,
[11)
w=+We
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k w=0
Kz h
+f -
|
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: w 2 —wo
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X " ", > o 9 :
X
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Fig. 1.

Interactions among internal gravity waves and vortical motions are depicted in wave number—frequency

space. Only one component of horizontal wave number (k,) is shown. Hatched surfaces show the solution to the
linear dispersion relation @ = 0, + wg; @ = *+ wy corresponds to internal inertial-gravity waves, and w = 0
corresponds to vortical motion on an f plane. If all motions were of very small amplitude, the energy of these
motions would lie upon the hatched surfaces. Finite amplitude, leading to nonlinear interaction, will cause energy
to “‘diffuse’ into clouds about the hatched surfaces. A cross—section through the hypothetical energy clouds is
shown on the right side of the figure where one imagines a ‘“‘cut’ at a fixed aspect ratio k,/k,. At low wave
numbers (large length scales) the clouds are quite dense just near the hatched surfaces; the motion is close to
linearized dynamics. Toward higher wave numbers (shorter scales), nonlinear interactions become more effective
at spreading the energy clouds away from the hatched surfaces. The three clouds come to completely overlap so
that all semblance to linearized dynamics is lost as one approaches a condition of three—dimensional turbulence

[from Holloway, 1983].

ing of the dispersion curves is due to the nonlinear
interactions. At large wave numbers the fans become very
broad, and the different modes of motion overlap. In this
case the amplitude relations, such as the vanishing of the
potential vorticity = for the internal waves, can con-
veniently be taken as the definition of the distinction
between the internal gravity and the vortical mode of
motion. Formally, we can use the amplitude relations (8)
and (11), which represent a complete set of basis vectors
in (u, v, £) space, to uniquely decompose any observed
field into its internal gravity and its vortical mode com-
ponent.

The superposition of internal gravity and vortical
motions is a well-observed phenomenon in laboratory
experiments [e.g., Lin and Pao, 1979]. Objects moving
through a stratified quiescent fluid create a

three—dimensional wake. The internal wave content of ~

the wake propagates away rapidly and leaves the

two—dimensional vortical motion behind.

Observations

According to the dispersion relation, free linear internal
waves have frequencies between f and N. Typical vertical
length scales associated with internal waves range from

about one meter to about one kilometer, typical horizontal
length scales from a few meters to a few tens of kilome-
ters. These time and space scales are fairly well resolved
by various oceanographic instruments and measurement
techniques, and an abundance of space and time series are
available. The determination of the displacement and hor-
izontal velocity fields from these measurements requires
handling a number of difficult steps. These include the
following steps:

1. One step is to determine the background
stratification. The background stratification is defined as
the stratification obtained by leveling all density surfaces
by isentropic processes. Usually, it is constructed by some
temporal or spatial averaging. It is, however, not clear
whether the observed fine structure is part of the irrevers-
ible structure of the background stratification or the resuit
of the reversible straining of a smooth background
stratification by the modes of motion.

2. Another step is to obtain the displacement ¢ of den-
sity from measurements of the temperature 7 and (less
adequate) measurements of the salinity §. Moored,
dropped, and towed instruments do not measure displace-
ment but density (from temperature and salinity) and
infer displacement from the linear relationship (2). If the
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Fig. 2a. Frequency spectrum of the north (v) and east (¥) com-
ponent of the current velocity measured by a current meter on a
subsurface mooring at a depth of 600 m in the western North
Atlantic Ocean. The inertial and tidal frequencies are indicated.
The local Brunt— Viisald frequency is ¥ = 2.27 c¢ph. The straight
line represents a —2.23 power law [from Fu, 1981].

background is not smooth but contains (irreversible) fine
structure the linearization becomes inadequate and leads
to a fine structure contamination of the observed signal
le.g., Phillips, 1971; Garrett and Munk, 1971]. The lineari-
zation is also incorrect when the motion field has a finite
rate of strain [Desaubies and Gregg, 1981]. Often instru-
ments only measure the temperature 7', but not the salin-
ity §. In this case one does not know whether changes in
temperature are caused by displacement of density sur-
faces (the internal gravity and vortical mode of motion) or
by intrusions where changes in temperature are compen-
sated by changes in salinity.

3. Another step is to reduce measurements of veloci-
ties relative to moorings or the earth’s magnetic field to
absolute velocities, removing mooring motion or magnetic
field variations.

The oceanic internal wave field is a random superposi-
tion of many waves with different amplitudes, frequencies
and wave numbers. Observations are usually represented
in the form of spectra. Frequency spectra of the horizon-
tal current velocity and the vertical displacement show a
substantial increase in energy level in the frequency band
between f and N. (See Figure 2.) Within this range the
spectra decay with an approximately —2 power law. In the
velocity (horizontal kinetic energy) spectrum a substantial
amount of energy is associated with inertial and tidal

currents. In the displacement (potential energy) spéctrum

a substantial amount of the energy is sometimes associ-
ated with the baroclinic tides. Except for these inertial
and tidal peaks, the level and form of the observed spectra
are fairly universal within the mid—latitude deep ocean.
Significant changes occur when the surface, the equator,
seamounts and submarine canyons are approached.
Vertical wave number spectra of the vertical tempera-
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ture gradient and vertical shear do not exhibit any peaks
but show a smooth distribution of variance (see Figure 3).
The forms of the two spectra are similar. Both are flat at
low wave numbers and start to roll off as k! at about
0.1 cpm. Energy is concentrated at low wave numbers and
shear at high wave numbers, between about 0.1 and
1 cpm. (The shear in the microstructure bumps at wave
numbers larger than 1cpm is due to intermittent
three—dimensional turbulence and of no concern here.)

Internal Gravity and Vortical Mode of Motion

The decomposition of the inferred or observed u, v,
and ¢ fields into the internal gravity and vortical mode of
motion requires the determination of the potential vorti-
city of the flow. One must simultaneously measure the
horizontal gradients of velocity and vertical gradients of
displacement (see equation (6)). This measurement can-
not yet be made from a single instrument package. A
combination of many instruments separated in space is
needed. One of the major attempts to perform this
decomposition was Miller et al.’s [1978] analysis of the
three—legged Internal Wave Experiment (IWEX) mooring
{Briscoe, 1975]. Using consistency tests [Miiller and
Siedler, 1976] and a least squares fit to a total of 1444
cross spectra they determined the amount of energy in the
internal wave field and in various ‘‘contaminations.”
Their result is shown in Figure 4. The part denoted inter-
nal waves is that energy consistent with linear free internal
wave motion on a smooth background stratification. The
contaminations consist of a fine structure contamination of
the displacement field and a fine structure and noise con-
tamination of the current field. The current fine structure
contamination is a substantial part of the observed current
fluctuations. It represents about 5 percent of the energy at
near inertial frequencies, about half of the energy at
mid—frequencies, and most of the energy at high frequen-
cies,

Miiller et al. [1978] only determined the energy level

0%

102

10+

—1 1
.01 f 0l 10 N 10
cph

Fig. 2b. Frequency spectrum of the vertical displacement of an
isotherm measured by an instrumented capsule yo—yoing at a
nominal depth of 350 m in a location 800 km offshore of southern
California [from Cairns and Williams, 1976].
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Fig. 3a. Vertical wave number spectra of the temperature gra-
dient for two stations in the North Pacific [from Gregg, 1977].

and the approximate scales of the contaminations.
Current and temperature fine  structure are
two~dimensional fields with vertical coherence scales
smaller than about 10 m and horizontal coherence scales
larger than a few hundred meters. The current noise is a
three—dimensional field with vertical and horizontal coher-
ence scales smaller than about 10 m. The further
kinematical properties of the contaminations were not
analyzed.

Other experiments yielded similar results. From a
microstructure sensing array, Ertksen [1978] found that
the current shear and density gradient over a 7-m vertical
scale are dominated by current and density fine structure.
More recently, Pinkel [1985] found from the analysis of
conductivity, temperature, and depth and Doppler sonar
data that a significant part of the current shear is concen-
trated at high frequencies and inconsistent with linear
internal wave motion.

-3
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Note that the IWEX experiment determined lower
bounds for the amount of non—internal wave motion.
The analysis determined the fraction of the observed
fluctuations that is consistent with linear internal wave
motion. If a single time series, say of vertical displace-
ment, is considered, all variance between f and N is con-
sistent with linear internal wave motion. If a current time
series from the same location is added linear internal wave
theory requires a certain frequency—dependent ratio of
potential to kinetic energy [Fofonoff 1969]. The observed
deviation from this ratio is a measure of how much energy
is inconsistent with linear internal wave motion. As more
and more instruments at other locations are added, more
and more of the observed variance might turn out to be
inconsistent with linear internal waves. An experiment
with an accuracy and resolution larger than that of the
IWEX experiment might, therefore, give even larger con-
taminations.

Temperature fine structure is generally viewed as either
being part of the irreversible background stratification or
being due to the nonlinear straining of a smooth density
profile by internal waves [Desaubies and Gregg, 1981).
The fine structure induced by linear straining appears as
an internal wave contribution in the IWEX decomposition.
The analysis of Desaubies and Gregg, [1981] and Johnson et
al. [1978] suggests that most of the density variance at
vertical scales larger than a few meters is due to straining,
linear and nonlinear. Current fine structure is often
viewed as low—frequency internal wave motion that has
small vertical scales or appears to have small vertical scales
because of the fine structure in the density profile. P.
Miiller (unpublished manuscript, 1985) argues, however,
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that these two models are inconsistent with the IWEX data
and suggests that current fine structure represents vortical
motion.

The IWEX and other experiments indicate that the
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kinematic structure of the fluctuations in the internal wave
band is not as well established as sometimes believed.
The ambiguities are not particularly problematic for the
energy which is concentrated at near—inertial frequencies
and at large wave numbers. In this range the fluctuations
are fairly consistent with free linear internal wave motion.
This is not true for the shear, which is concentrated at
small vertical scales. The Garrett and Munk [1975] spec-
trum assigns most of the shear to near—inertial internal
waves. [t is, however, not known which mode of motion,
whether the internal gravity or vortical mode, and which
frequencies and horizontal wave numbers contribute to
the shear. The kinematic structure of the oceanic shear
must be regarded as unknown.

The Garrett and Munk Spectrum

The diverse internal wave measurements have been
combined by Garrett and Munk into a convenient model
spectrum to describe the distribution of internal wave
energy in wave number—frequency space. This model
spectrum assumes that the fluctuations are linear internal
waves, i.e., satisfy the internal wave amplitude and disper-
sion relation. In time this model spectrum has been
improved [Garrett and Munk, 1972b;, Garrett and Munk,
1975; Cairns and Williams, 1976, Desaubies, 1976]. The
latest version [Munk, 1981] is formulated in discrete verti-
cal modes for an exponentially stratified ocean

N@E) = Nyet? 14

with Ng=52x 1073s! and » = 1.3 km. The model
assumes horizontal isotropy. The energy spectrum per
unit mass as a function of frequency @ and mode number
J is given in the separable form

E @, j) = b?NoNEy B @) H (j) 15)
where
HG) =-—1_/3 -1 TSH@O=1 (62
Vi = R L j=1
2 1
B(m)=-;£—(-m j:dwa(w)-l (165)

and Eg= 6x 10~ and j. = 3. The normalization of the
frequency spectrum implies f << N. The mode number
spectrum decays with a slope ¢t = —2 for j >> j.; the fre-
quency spectrum decays with a slope r = ~2 away from
w = f. To calculate other spectra and to convert to
different representations the WKB approximation to the
wave functions and dispersion relation is used. The spec-
tra of the vertical displacement and of the horizontal velo-
city then become

2_ f2

(17a)
Fuw, )+ o) = et 04 L g, )
[1}]
(17d)

Instead of discrete standing modes it is often convenient
to introduce a continuum of upward and downward pro-
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pagating modes with local vertical wave number
%
N — w?
k, = t k, [:;5-_—f2

The discrete spectrum (15) then implies vertical symmetry
(equal amount of upward and downward propagating
energy) and corresponds to the continuous spectrum

(18)

Ew,k) do dk, = %E(m,j) dosj (19
where the relation between the mode index J and the
vertical wave number k, is given by the WKB approxima-
tion of the dispersion relation. In the hydrostatic limit,
o << N, this relation takes the simple form

1r N .
Ikl = & 4 (20)
The continuous model spectrum (19) is usually referred to
as GM76.

The model spectra (15) or (19) can be used to calculate
all second—order moments of the internal wave field. To
keep the shear and the rate of strain finite, a cutoff wave
or mode number must be introduced. If this cutoff wave
number is taken to be the wave number where the tem-
perature gradient and the shear spectra (Figure 3b) start to
roll off (about 0.1 cpm), the Richardson number and the
rate of strain become of order one [Munk, 1981].

The above model spectra provide the basis for most
dynamical calculations. We must keep in mind that the
model spectra assume that the observed fluctuations are
linear internal waves, an untested assumption in some
parts of wave number—frequency space.

3. RESONANT INTERACTIONS
Discrete Interactions

Resonant interactions were discovered in the fluid
dynamical context by Phillips (1960, 1961] who noted that
two waves with phasesk, x — w;t and k,-x — wyf force a
third wave with the sum and difference phase. If this
third wave is a free wave, i.e., if wave number and fre-
quency satisfy the resonance conditions,

kitk; = k; (21a)

w tTw = w3 215
where w; = Q () is the dispersion relation, energy is
systematically transferred from the two waves into the
third wave. Whether or not the resonance condition (21)
can be met depends on the structure of the dispersion
relation. For internal waves there are many solutions to
the resonance condition.

The general approach to resonant nonlmear interactions
starts from the equations of motion. For a quadratically
nonlinear system these may be cast into the form [Hassel-
mann, 1966, 1967]

- eiw; 2 (22)

kytky= kq

as+ iwza; = Tapaia,

Here g, denotes the wave amplitude of wave i with wave
number vector k; and eigenfrequency w,;. I'_3, is the cou-
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pling coefficient and ¢ a small parameter characterizing the
weakness of the nonlinear interactions.

To lowest order in e, the solution represents a free
linear wave

—lw;t
a = o; €

(23)

with constant amplitude «;. If the nonlinear interactions
are included the amplitude becomes a slowly varying func-
tion in time, a;, = «; (). ,

For a discrete triad of waves that is exactly in reso-
nance, i.e., that satisfies k;+k, = k; and
@)+ wy = w3, the evolution of the amplitude is governed
by

o = —¢ioy[*ay*a;
dz == —Eimz F‘al"ag (24)
ay = —¢iw3l aja

where I' = I'_j,. From these equations it is found that
the energy E = aa;* and momentum
P, = (x;a;*/w;)k; of the interacting waves are con-
served:

3
¥ E = const.

i=1

(25)
3
3> P = const

=17
whereas action 4; = (a; a;*/w,) changes according to
arAl = a¢A2 = '—a(AJ (26)

The equations for interacting waves are analogous to the
equations for interacting particles. Within this analogy
action represents the number of waves [Hasselmann, 1966,
1967]. The number of waves is not necessarily conserved.
In the above resonant triad, two waves interact and pro-
duce one third wave.

Transport Theory

Transport theory is concerned with the interaction of
many triads of waves, almost all of which are off-resonant.
However, the effect of such interactions can be expressed
in terms of resonant interactions, and a closed evolution
equation for the energy density  spectrum
Ex = <] a?| > can be derived, if appropriate condi-
tions are satisfied. To understand these conditions, we
outline some of the steps required to derive this evolution
equation for quadratic nonlinearities. A more rigorous
derivation for quadratic and higher—order nonlinearities
using a systematic multiple time scale perturbation expan-
sion can be found in Hasselmann [1966, 1967] and Benney
and Saffman [1966].

--—First, we rewrite equation (22) in terms of the variable

aj:
d3 - —Eiwg fdkldkzl‘alaze"”' 5(k1+ kz—k:l,) (27)

where we have written A = w3 — w; — w; and taken the

continuum limit
T~ fa .
k
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Now make the following suppositions:

1. There exists a ‘‘slow time scale’’ T such that oy and
a; can be considered constant during the interval
0< t < T. Equation (27) can then be integrated to give

as()=az (@ = — eiws J dkydksT a1 (0)ac; (0)
(28)
—iAt Sin-él
e 2

Aa/2)

2. The ‘“‘correlation time” of the wave field is short
compared with 7 so that all modes are statistically
independent at the start of any such interval. Then multi-
plying each mode of (28) by its complex conjugate yields

5y 8 ki + ka— ki),

<|a3(t)| > - <|a3(0)|2> =

2
(e fdkldkzl rI2<|a©®]2> (29
sinz-Az—t
< 0] > (ki + ky—
plus similar terms. As ¢ increases, the quantity

sin2(A1/2)/ (A/2)? weights the integral on the right—hand
side of (29) to ever smaller A values. If ¢ becomes
infinite, the replacement

sinz—Az—t

—_— = 7T} 30)

@) w8 (A) (
would be exact. However, according to assumption 1, ¢ is
finite; therefore sin?(A#/2)/ (A/2) has a width

A= 2r/t> 2n/T which cannot be neglected. The
replacement (30) is only likely to be accurate if the third
assumption holds:

3. The variation of |T]2<|a;(0)] 2> <|ay(0)] 2>
is small (the spectrum and coupling coefficients are
“smooth’”) over that width.

If all these conditions are met, one obtains the transport
equation

<|a3(t)|2>—<|a3(0)|2> ~ 9k, -
t d¢
(ew;]zfdkldkzll“lZ<|a,(0)|2>
<|a2(0)|2>1r8 (A)S (k|+ kz—' k3) Tt

(3D

which is a closed evolution equation for the spectrum.
The basic statistical closure hypothesis is the assumption 2
which states that the right—hand side of (29) can be deter-
mined under the assumption that all mode amplitudes are

statistically independent or Gaussian. It is shown in sta-

tistical mechanics [Prigogine, 1962] that this assumption is
correct for infinitely weak nonlinear coupling among
dispersive wave modes. A dispersive, weakly nonlinear
wave field rapidly attains and never departs much from a
Gaussian state.

For internal waves the transport equation takes the
explicit form
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%A ® = [akak {77 5 k—k'—k")5 -a'- ")

JAKNIAK)-AKIAK)—AK)A K]
32)
+2T7 8 k—-k'+k"Molw—w'+aw"™)

AK)AKD+AK)AK)—AK)AKD])

where 4 (k) = (E®&)/w(k)) is the action density spec-
trum and 77 and T~ are transfer functions depending
on k,k’, and k”. Explicit expressions for 7= and T~
can be found in the works by Miller and Olbers, [1975]
and Olbers [1976]. The transfer equation can be inter-
preted in terms of two colliding waves or antiwaves creat-
ing or annihilating a third wave or antiwave with collision
cross—sections 7~ and T~ . The § functions assure that
the collision process conserves energy and momentum.

Transfers in the Garrett and Munk Spectrum

The transfer equation (32) has explicitly been derived
and evaluated for the Garrett and Munk (GM) spectrum
by three different groups. These are Olbers, [1976]},
McComas and Bretherton, [1977), and Pomphrey et al.,
[1980]. All these groups were motivated by similar goals
but used slightly different approaches and different codes
for the numerical evaluation of the transfer integral.

The common goals are at least threefold. The first one
is to understand to what extent the Garrett and Munk
spectrum represents an equilibrium or steady state solu-
tion for nonlinear interactions. The second goal is the
determination of relaxation rates for disturbed spectra.
These relaxation rates are also needed in theories which
deal with other aspects of the dynamics of internal waves,
for example, in the calculation of internal wave induced
diffusion coefficients [Miiller, 1976]. The third major goal
is the determination of the energy flux through the spec-
trum, supposedly from low to high wave numbers. This
energy flux provides the energy source for mixing
processes in the ocean. One might hence get an estimate
of mixing from the nonlinear interaction calculation,
without understanding and evaluating all the complicated
breaking and overturning processes that lead to mixing.

All three groups start with the equations of motion in
their Lagrangian form. This is advantageous because it
automatically insures the symmetry of the coupling
coefficients and hence the conservation of energy and
momentum. The interaction with the vortical mode of
motion is excluded since the linear solutions are assumed
to be proportional to exp (—iwt}, whereas the displace-
ments of the linear vortical mode (w = 0) increase linearly
with time. Olbers defines the pressure fluctuations by

o ' @t) = p, &t)—pr) (33a)

whereas McComas and Bretherton and Pomphrey et al.
define it by
7' @) = pe@t)—p () (338)

Here p; &, t) is the Lagrangian pressure, i.c., the pressure
of a fluid particle at time ¢ which was at position r at time
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t = 0; pr &,t) is the Eulerian pressure, i.e., the pressure
of the fluid particle which .is at position r at time ¢; and p
is a prescribed background or equilibrium pressure. This
difference in definition does not affect the lowest—order
quadratic interaction terms, only the higher—order terms.
An Eulerian approach also yields an identical lowest—order
interaction term. For all approaches the transfer functions
Tt and T~ are the same on the resonance surface. The
lowest—order resonant interactions are independent of
representation [Henyey and Pomphrey, 1983). The struc-
ture of the transfer functions off the resonant surfaces and
their possible dependence on the representation of the
wave field has, however, not been systematically investi-
gated yet. The major difference between the three groups
is that Olbers and McComas and Bretherton represent the
internal wave field as a continuum of vertically propagat-
ing waves whereas Pomphrey et al. represent the wave
field as a discrete set of vertically standing waves. Minor
differences are that Olbers uses the Garrett and Munk
[1975] model spectrum for his calculation whereas McCo-
mas and Bretherton and Pomphrey et al. use the GM76
{Cairns and Williams, 1976] model spectrum and employ
the hydrostatic approximation.

Despite the differences in the representation of the wave
field, in the numerical codes and in the display of the
results, the results from all these groups are mutually con-
sistent. For the discussion of these results it is convenient
to rewrite the transport equation in the form

%Aa;)= -2,k 4 &)+ k) (34)

where

v, &)= %fdk'dk"{T+6(k—~k'—k")6(w—-w’—w")

[dxn+4 ®nl+ 27 s &-K'+k" 35

5 lw—o'+0” 4Kk -4 (k')]}
and

10‘) - fdk'dk"{T+ 5 (k—k'—k")& (w—-w'-w")
(36)

+2T 8&k—k'+k")38 (w—w'+w")} A&NIAK")

Here 2v, ) is the rate at which wave—wave interactions
scatter energy out of wave number k whereas I (k)/A4 (k)
is the rate at which resonant interactions between other
waves force energy into wave number k. The rate v, is
the Langevin rate when (34) is viewed as the transport
equation for a Langevin type equation of motion. It is
also the decay rate of McComas’ [1977] spike experiments

and the fast decay rate of McComas and Miiller [1981al ™

since 9,4 k)~ — 2, (k)4 &) for a narrow spike at
wave number k.
The overall rate at which the spectrum changes is given

by the Boltzmann rate
3 4 k)
2 k) 16)

and the rate of energy input into wave number k by

(37
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k)

CAK)

The result of a typical calculation of the Botzmann rate v
is shown in Figure 5 from McComas, {1977]. Figure Sa
shows the spectral density of the GM76 spectral model as

21!1-' = = 2115 + 21!,, (38)

a function of vertical wave number and frequency.

Figure Sb shows the interaction time 7 = (2v5)~! for that
spectrum. The interaction time changes from a few days
at low wave numbers to tens of minutes at high—wave
numbers. The Langevin rate v, for the GM76 spectrum
as a function of frequency and mode number is shown in
Figure 6, from Pomphrey (1981). Beyond the straight
long—dashed line the Langevin rate is larger than the fre-
quency. Figures 5 and 6 give a first view of the charac-
teristic time scales of resonant wave~wave interactions in
the GM model spectrum. The Boltzmann rate describes
the evolution of the smooth spectrum, and the Langevin
rate the decay of spikes in the spectrum or the relaxation
of a distorted spectrum to a smooth spectrum. Small
Boltzmann rates indicate that the spectrum is approxi-
mately in equilibrium with respect to nonlinear interaction.
The normalized Boltzmann rate

VB
Ve + Vp

VB

VF

&1

is shown in Figure 7 as a function of mode number and
frequency for the GM76 spectrum. In the ‘‘steady™
region, R is smaller than 0.1. In the ‘‘nonsteady’ region
the transfer is from the low mode number region to the
high mode number—low—frequency region.

Basic Interaction Mechanisms

The above results represent the basic findings of the
resonant wave—wave caiculations. They were obtained by
the complicated yet straightforward numerical evaluation
of the transfer integral. Some understanding into this
mathematical exercise was brought by McComas and Breth-
erton [1977] who discovered that much of the complicated
transfers can be understood in terms of three simple limit-
ing interaction mechanisms. This simplification is made
possible because the transfer functions 7= &k, k’,k”) in
the source function (32) vary much less than the action
density spectra 4 (k). To demonstrate this, contours of
] T | are plotted in Figure 8 as a function of k”/k, and

‘“/kn,. For a given horizontal wave number k, wave
triads that satisfy k, — k, '+ k,” = 0 must lie within the
open rectangle, the ‘‘kinematic box.”” In most parts of the
box, | T~ | is seen to vary much less than the GM spec-
trum, Thus, the signature and strengths of the nonlinear
transfers are mostly determined by the structure of the
GM spectrum, with the transfer strongest where there
exists an action imbalance between triad members.
~-The three interaction mechanisms identified by McCo-
mas and Bretherton are termed elastic scattering, induced
diffusion and parametric subharmonic instability. Typical
wave triads for these interaction mechanisms are shown in
Figure 9. Elastic scattering denotes the backscatter of a
downward propagating high—frequency wave (k’,w’) into
an upward propagating wave (k,w) by a low—frequency
near—inertial wave k", @"). See Figure 92. The incident
and the reflected wave have nearly the same frequency
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and horizontal wave number, but their vertical wave
numbers are almost the opposite of each other. The third
component, the low—frequency component, has almost
twice the vertical wave number, ie.,
1 k"= 2| k."| = 2| k;|. Elastic scattering is similar to
Bragg scattering at a low—frequency field. There is little
energy exchange with the low-frequency component.
Elastic scattering transfers energy out of the more ener-
getic of the high—frequency waves to the other until their
energies are equal. This process acts only in vertically
asymmetric spectra and efficiently damps out any asym-
metries in the high—frequency part of the spectrum. The
symmetric GM model spectrum is in equilibrium with
respect to elastic scattering.

The elastic scattering mechanism describes the back-
scatter of high—frequency internai waves by
low—frequency inertial currents. High—frequency waves
are also backscattered by low—frequency density fluctua-
tions, i.e., by the irreversible fine structure of the density
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stratification. This scattering process has the same effect
on asymmetries and is of similar efficiency [Mysak and
Howe, 1976; McComas and Miiller, 1981a].

Induced diffusion (ID) denotes the interaction of
small-scale waves with large—scale waves. More pre-
cisely, it is the scattering of a high—frequency, high—wave
number wave (k,w) by a low—frequency, low—wave
number wave (k”,w") into another nearby
high—frequency, high—wave number wave k', w’). See
Figure 96. This process can also be viewed as a
small-scale wave packet propagating through random
waves with scales much larger than the ones of the packet
(see section 5). The wave packet experiences random per-
turbations of its wave number as it propagates through the
large—scale wave field. It prescribes a random walk. The
packet forgets its initial wave number and the
root—mean—square deviation grows linearly in time. Since
action is conserved [Bretherton and Garrett, 1968) the ran-
dom walk leads to diffusion of wave action in wave
number space. The shear of the large—scale waves is
responsible for this diffusion. For the Garrett and Munk
spectrum the vertical shear of the horizontal current is the
largest. Hence diffusion in vertical wave number space is
dominant. The ID mechanism governs the nonlinear
interactions in the high—frequency, high—wave number
range of the spectrum (denoted by ‘“‘steady region” in Fig-
ure 7).

Parametric subharmonic instability (PSI) is the decay of
a large—scale wave (k,») into two small-scale waves
k’w" and (k"w') of approximately half the frequency.
See Figure 9¢c. This interaction is the parametric subhar-
monic instability of a system where the parameters
defining the natural frequencies vary with time. The most
prominent example is a simple pendulum whose length is
changed at twice the natural frequency of the pendulum.
In the internal wave problem the primary effect is that the
large—scale wave changes the buoyancy frequency of the
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Fig. 6. Normalized Langevin rate vp for the GM76 spectrum as
a function of frequency for various vertical mode numbers.
Above the long—dashed line the Langevin rate is larger than the
frequency. The short—-dashed lines separate regions where the
nonlinear interactions are dominated by induced diffusion (ID),
parametric subharmonic instability (PSI) and an ‘‘assortment of
triads” (AT) [from Pomphrey, 1981).
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small-scale waves. This effect has been clearly seen in
the laboratory [McEwan and Robinson, 1975). The PSI
mechanism is responsible for the transfer from low—to
high—wave number near—inertial oscillations (from the
positive to the negative region in Figure 7).

Induced Diffusion

To assess quantitatively the role of the basic interaction
mechanisms in shaping the spectrum one needs to evalu-
ate their transfer rates. This can be done by taking the

appropriate limits in the transfer integral. For the ID
mechanism one finds
g
b p o A 40
m A k) = 3 k, ¢ 3k &) (40)

with a diffusion coefficient {McComas and Miiller, 1981a]

= nkifS li k,] 41)

where

Sk) = flkl|’4 k)

is the shear content spectrum. The diffusion equation
(40) describes the evolution of the high—frequency,
high—wave number part of the spectrum, indicated by a
tilde in (40). Wave action diffuses in vertical wave
number space only. The diffusion coefficient depends on
the shear content of the low—frequency near—inertial
oscillations at which the high—frequency waves scatter.
Also, the diffusion coefficient depends on the vertical
wave number in general.

The action of the high—frequency, high—wave number
region is conserved:

(42)

aA(k)+—QA(k)=0 43)
where.
- D, 9 7
0, &) Dy 3K A k) (44)
koD
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Fig. 7. Frequency—vertical mode number plane showing the
energy growth (plus sign) and energy decay (minus sign) regions
for the GM76 spectrum. The “steady region” is where
R = vg/vp £ 0.1 [from Pomphrey, 1981].
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ky"/k, and k,7k,. For a given horizontal wave number vector
k, the wave triads that satisfy k, — k', + k," =0 must lie
within the open rectangle [from Pomphrey, 1981].

is the action flux. The energy of the high—frequency,
high—wave number region is, however, not conserved.
The energy equation takes the form

aE(k)+——Q£(k) ,‘:QEm)=0(4s)
where
Ek) = wd k)
is the energy density and
O k) = 00, k)

the energy flux. The last term in (45) describes the
energy exchange of the high—frequency, high—~wave
number region with the low—frequency waves which cause
the diffusion.

When calculating the characteristic rate of change

D.AA
as
To ok Dag A 0~ ki o

we must distinguish two cases. One rate corresponds to
the fastest possible time scale, which one obtains by
choosing the maximum gradients, i.e., A4/ 4 ~1 and
Ak, ~ k', ~ (f/w) k,. This yields the relaxation or
Langevin rate

- e

For smooth spectra, (A 4/Ak,) ~ (4/k,) is a more
realistic approximation and yields the Boltzmann rate

vk) =

47

By k) = ww——slik,] 48)

___These analytical approximations reproduce remarkably well

the complete transfer integrals. This can be inferred from
Figure 10 which compares the relaxation rate (47) with
the full evaluation of the transfer integral.

Contour plots of the two diffusion time scales are shown
in Figure 11 for the GM76 spectrum. The slow time scale
(2v5)! describes changes in a smooth spectrum. The fast
time scale (2v,)~! describes the relaxation of spikes in the
spectrum. It can be seen that smooth spectra vary slowly,
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Fig. 9. Schematic representation of (a) elastic scattering, (b)
induced diffusion and (c) parametric subharmonic instability triads
in a vertical-horizontal wave number plane [from McComas and
Milller, 1981a].

whereas superimposed spikes decay rapidly, indicating
some sort of equilibrium for the high—wave number,
high—frequency part of the GM spectrum. What kind of
equilibrium is this? The diffusion equation (40) has two
stationary solutions for the high—frequency, high—wave
number spectrum 4 (k): a no—action—flux solution where
the spectrum 4 (k) is independent of k, (equipartition of
action) and a constant—action—flux solution where the
action flux Q, k) = -D; @/8k,) A k) is independent of
k.. The GM76 spectral model has a high—wave number
slope of ¢ = —2 at all frequencies. Such a slope makes the
action density spectrum A4 (k) independent of k,. The
present analysis hence implies that the GM76 spectrum
represents a no—action—flux solution and does not support
any diffusive action flux to high—wave numbers.

In a search for a more appealing constant—action—flux
solution McComas and Miiller [1981a] made a distinction
between the wave number slopes at high and
low—frequencies. If the low—frequency slope is t = —2
then D; ~ k? and a high—frequency slope of 7= -3
represents a constant—-action—flux solution. If the
low—frequency slope is ¢t = —2.5 then D; ~| k| and a
high—~frequency slope very close to t = —2 represents a
constant—flux solution. They argue that this latter case
might be realized in the ocean since vertical wave number
spectra of currents, which are sensitive to the energy at
low—frequencies, often show slopes close to t = —2.5
whereas spectra of the vertical displacement, which are
sensitive to the energy at high—frequencies, show slopes
around ¢ = —2,

A constant—action—flux solution, however, is also not
easy to interpret. Consider such a solution, as shown in
Figure 12. At vertical wave number k =8, a
constant—action—flux (, enters the hatched region. At
vertical wave number k, = 8, the same flux leaves the
region. Action is conserved; §; 4 = 0. The energy flux
into the region is w; Q,. The energy flux out of the
region is w,Q,. Since action is diffused in vertical wave
number space at a constant horizontal wave number it fol-
lows that w; > w;. Hence the energy flux out of the
region is smaller than that entering. A
constant—action—flux solution leads to a convergent
energy flux. This can also be inferred from the energy
equation (45). For a stationary spectrum the divergence
of the energy flux and the energy exchange with the
low—frequency waves must balance.
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The energy equation (45) also shows that a constant
energy flux solution, O (k) independent of k,, is not a
stationary solution for the high—frequency, high—wave
number spectrum E (k). McComas and Miller (19815),
however, proved that a constant energy flux solution at
high—-wave numbers leads to a stationary vertical wave
number spectrum E (k) = [dk, E (&) where the integra-
tion is over all horizontal wave numbers or, equivalently,
over all frequencies, high and low.

Finally, we mention that the no—action—flux solution or
the equipartition of action can be derived using statistical
mechanics, and that this result is connected with the more
familiar state of equipartition of energy. For this deriva-
tion we regard the high—frequency, high—wave number
waves as the test waves and the low—frequency, low—wave
number waves as the background. The energy of the total
system is conserved, and so is the action of the test
waves, in a linearized treatment. Let E; and 4; denote
the energy and action in wave mode j. Then the probabil-
ity density for wave action (in a grand canonical ensem-
ble) is gexp(~ B E; + ud;). Here, B is the ““inverse
temperature’ of the system, u is the ‘‘chemical potential”
for wave action, and g is a normalization factor. Thus,
the expectation value (denoted by angle brackets) of the
wave action is

1
Baw;+u
(49)

while the background waves, whose action is not con-
served, have

<AJ>TW = g‘!;dAjAj exp(—BE}+p,Aj)=

(50)

10

10
1 5 9 13 17 2

w/t

Fig. 10. Comparison between the Langevin rate calculated from
the dominant induced diffusion transfer mechanism (equation
(47)) (dashed) and the numerical evaluation of the complete
transfer integral for three different vertical mode numbers {from
Pomphrey et al., 1980].
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Here, w; denotes the frequencies of the test waves and )
the frequencies of the background waves.

The development of the induced diffusion equation has
ignored the effect of the small scale test waves on the
background, since the background is much more intense
than the test wave field. Thus, built into the theory is the
assumption that

<A>mw << <A4>p (51)

In fact, the test wave action should be infinitesimal com-
pared with the background action. Thus Bww << u and
<A4;>mw = Yy, independent of j; ie., action is
equipartitioned. The dominance of Bwrw over u would
have given the contrary (but more familiar) result, that
energy is equipartitioned.

Parametric Subharmonic Instability

The parametric subharmonic instability mechanism
(PSI) is an instability wherein a low—wave number wave
decays into two high—wave number waves of half the fre-
quency. Because of the specific structure of the internal
wave dispersion relation this mechanism is most efficient
at low frequencies. Assuming 4 k"), 4 k") << 4 () and
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Fig. 11. Slow and fast induced diffusion transfer times as a func-

tion of vertical wave number and aspect ratio or frequency. In
the shaded areas the transfer times are 27 times smaller than the
wave periods [from McComas ard Milller, 1981a).
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Fig. 12. Schematic representation of the constant—action—flux
solution. If there is a constant action flux through the hatched
region, energy will be transferred out of that region and accumu-
late in the low—frequency, low—wave number waves which cause
the diffusion [from McComas and Miller, 19815).

o~ 2u'~ 20"~ 2f and | k| <<} k%] ,| ¥;] one finds
that high—wave number near—inertial oscillations are gen-
erated at a rate

_3_ N = ’ 3 —

L4k = st [T 8
[o—o0'~0 &~Kk)] 4 &)

where 7~ = 9/167 k2 f. The PSI mechanism hence sup-

ports a downscale energy flux into near—inertial oscilla-
tions. Explicitly, the growth rate is given by

(52)

. Y
2wy k") 2 "N’ S x,,Zd (53)
where
%
= |3 L
x 3 o7 (54)

The growth rate of the high—wave number near—inertial
waves depends on the shear content of the
double—frequency wave with a wave number x’ times
smaller. The factor x’' arises because near—inertial waves
k',w") can only be generated by double frequency waves
(k,w) with vertical wave numbers | k, | < (] &, /x),
because of the resonance constraints. The GM average
value of x is about V10.

The PSI mechanism dominates the nonlinear transfers
for the high—wave number near—inertial oscillations and
(53) is a good representation of the transfer rates for
these waves. The PSI mechanism, -however, does not
the low—wave number
double—frequency wave.

Since the frequency resonance requires o'+ o” = @ and
since @', " 2 f, the unstable wave, o, must have a fre-
quency larger than 2f. The PSI mechanism hence
transfers energy out of the 4f — 2f frequency band into
the £ — 2f band. All transfers are contained in this region
from f—4f. We can hence define a one—dimensional
energy flux by
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Fig. 13. Schematic representation of the dynarhical balance of
McComas and Miller [1981b). Energy is generated at low vertical
wave number | k;| < B8.. Between 8. and B, there is an inertial
range where the ID mechanism at high frequencies and the PSI
mechanism at low frequencies provide a constant energy flux to
high wave numbers | k,| > 8., where energy is dissipated. The
wave number 8, is determined as the wave number where the
spectrum must roll off because the nonlinear transfer can no
longer keep up with dissipation.

D 0 k) =0 (55)

ak;

The flux Q¢ (k;) can be calculated by integrating over the
growthi (or decay) region of the spectrum (see Figure 7).
For the GM76 spectrum Pomphrey et al. [1980] obtain a
value of

d
EE(/Q)*'

0
fszs (k) = 64x 107 wm? (56)
“h

Equilibrium with respect to the PSI mechanism requires
AKkD) ~ A& ~24&k) or EkK)~ EK") ~ Ek).
Partial equilibrium may be obtained by increasing the
energy of inertial waves, i.e., by an inertial peak. The pri-
mary effect of the PSI mechanism is hence the creation of
an inertial peak. The GM spectrum is not in equilibrium.
Its inertial peak is not sufficiently pronounced. Energy is
still transferred from high to low—frequencies, as calcu-
lated above. The observed inertial peak is also partly due
to a latitudinal turning—point effect [Munk,.1980; Fu,
1981].

In the GM spectrum the PSI and ID mechanism
represent the low— and high—frequency limits of the
transfers at high vertical wave numbers. High vertical
wave number waves with frequencies close to f interact
mainly with low—wave number waves of twice the fre-
quency. This is the PSI mechanism. High vertical wave
number waves with frequencies much larger than.f

interact mainly with low—wave number, low—frequency’

waves. This is the ID mechanism. In the intermediate
frequency range the transfers are not dominated by any
particular scale selective interaction triad.

Dynamic Balance

An attempt to fit the resonant interaction calculations
imto a complete and consistent model of the dynamics of

{
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the internal wave field was put forward by McComas and
Miiller, [1981b]. Their model assumes that internal wave
energy is generated at low vertical wave numbers
| k, ] < B+ and dissipated at high vertical wave numbers
| k| >B.. See Figure 13. McComas and Miiller then
prove analytically that there exists an inertial range
between 8. and 8. in which resonant interactions provide
a constant (independent of vertical wave number) down-
scale energy flux from the generation to the dissipation
region. At high—frequencies the flux is provided by the
induced diffusion mechanism, and at low frequencies by
the parametric subharmonic instability mechanism (see
Figure 13). The inertial range has a stationary vertical
wave number spectrum

Ek,) « k2 (57)

as observed. This vertical wave number dependence can-
not be obtained from simple dimensional arguments
because the dominant transfer mechanisms (the ID and
the PSI mechanisms) are nonlocal in wave number space.
Dimensional arguments lead to E(k;) <] k,| 3. The
downscale energy flux under the PSI mechanism is given
by

o = Zm W

The flux depends on the total energy E and the wave
number bandwidth 8.. Both dependencies are quadratic
so that a ten—fold change in either of them results in a
hundred—fold change of the energy flux. The downscale
flux under the ID mechanism is determined by matching
with the low—frequency region. It has the same functional
dependence on f, N, E, and B. and constitutes 40% of
the total flux. The total energy flux Qr = OF + QJ°
determines the overall dissipation time scale

EB? (58)

E
Tdiss = o (59)
The wave number 8. at which the spectrum must roll off
because the nonlinear interactions cannot keep up with
dissipation can be determined from the fact that the flux
at 3. must be equal to the flux at 8,. This yields

S .
B = 5.5 (60)
where S is the total shear of the internal wave field. Note
that 8, decreases as the energy level of the spectrum and
the energy flux through the spectrum increase. These are
the principal results of McComas and Miiller’s theory.
They hold for any spectrum as long as the energy is con-
centrated at low, and shear at high, vertical wave
numbers. They are based on the dominance of the ID
and PSI mechanisms. For the GM76 spectrum their

Orz=10) = 1.5x 100 Wm™? (61)
and a depth dependence
0r () ~ N (z) (62)

since £ ~ N and 8. —~ N for the GM spectrum. The
vertically integrated energy flux is

[ #0:@) = 107 W (63)
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N
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The flux due to the PSI mechanism is 0.6 x 107> W m2,
in excellent agreement with Pomphrey et al.’s [1980] values
(equation (56)). The overall dissipation time scale has a
surface value

Tdiss(z = 0) = 20d (64)
and increases with depth as
Tdigg(Z) ~N1(2) (65)

If a fraction § of the energy flux is used for mixing, the
equivalent mixing coefficient K, is determined by

pqu]\ﬂ = SQE (66)
Ford = 0.2 [Thorpe, 1973] we find
K, = 10 m?s! 6n

independent of depth. This value is roughly consistent
with kinematic estimates (which are based on the statistics
of the frequency and thickness of mixing events) and with
estimates from microstructure measurements [Garrett,
1984]. However, there are also observational and theoret-
ical results which conflict with some of the above results.
Direct observations of kinetic energy dissipation rate e,
which we would expect to scale as Qg, (cf. (62)), have
been made in the upper kilometers of the ocean. They
tend to show e increasing with increasing N but not so
rapidly as N2. Gargett and Osborn [1981) and Lueck et al.,
[1983] show results closer to € = N*! but with significant
uncertainty in the exponent. If indeed Qp « N*!, then
(66) implies K, « N-!. Inferred K, from many environ-
ments characterized by a wide range of N also appear to
support X, = N~! and hence, by (66}, Qr « N [Gargert,
1984]. However, the depth dependence of X, is far from
being established and much more data are needed to draw
definite conclusions. A theoretical discussion by Gargett
and Holloway [1984] also suggests € « N with K, « N1,
an item to which we return in section 4.

The roll-off wave number 8, is independent of depth if
one assumes a constant Richardson number, since Ri =
constant implies S ~ N2. For GM76 parameters and
Ri = 1 one finds

B, = 1.3m™' ~ 0.2 cpm (68)
Both the constancy with depth and the value are con-
sistent with the observed roll-off of the shear spectrum
(see Figure 3 and Gargett et al., [1981].

McComas and Miiller’s [19815b) balance predicts the slope
and rolt—off wave number 8. of the observed vertical
wave number spectrum. It is, however, not a complete
balance. It does not explain the energy E, the wave
number bandwidth 8., and the shear §. These are
expected to depend on the specifics of the generation and
dissipation processes.
energy flux Qr and the roll-off wave number 8., given
E,S,andB-.

Besides these principal limitations McComas and
Miiller’s balance also has difficulties in predicting a sta-
tionary frequency spectrum. Under the ID mechanism the
high—frequency region loses energy, which is gained by
the near—inertial waves which cause the diffusion. Only
in combination is the vertical wave number spectrum sta-

The balance only predicts - the-
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tionary. Further, the PSI mechanism removes energy
from the 4f~2f band and transfers it into the 2f—f
band at smaller scales. As long as there is a downscale
flux this mechanism will deplete the upper frequency band
and fill the lower one. To analyze the mechanisms which
compensate for these frequency transfers McComas and
Miiller analyzed results of a time—stepping model that
includes all interacting triads, not just the ID and PSI
mechanism. From this model and their analytic balance
the roles of resonant wave—wave interactions in shaping
the internal wave spectrum can be summarized as follows:

1. The primary effect of nonlinear interaction is to
make the spectrum symmetric at high—wave numbers (by
the elastic scattering mechanism), smooth at high—wave
numbers and high~frequencies (by rapid diffusion with
the fast time scale), and to create an inertial peak (by the
parametric subharmonic instability mechanism). The
observed spectra are symmetric and smooth and are in
equilibrium with respect to the first primary processes.
The observed inertial peak is, however, not sufficiently
pronounced to be in equilibrium with respect to the PSI
mechanism.

2. The secondary effect of the nonlinear interactions is
to adjust the spectrum to deliver a constant downscale flux
under the PSI and ID mechanisms. This creates a transfer
in frequency space which is a tertiary effect and is bal-
anced by nonidentifiable interactions.

Relaxation

The relaxation of distorted spectra is characterized by
the Langevin rate (35) which describes the decay of spikes
in an otherwise smooth (equilibrium) spectrum. This
decay rate has been calculated for the GM spectrum by
McComas, [19771, Pomphrey et al. [1980], and McComas
and Miiller {1981al. McComas [1977] also calculated the
relaxation rates for a vertically asymmetric GM spectrum
with 10 percent more energy in the upward than in the
downward propagating waves. However, observed and
theoretically predicted deviations from the GM spectrum
are more complicated. See, for example, Frankignoul,
{19741, Wunsch [1976], Wunsch and Webb [1979], Eriksen
[1982], Pinkel [1983), and Briscoe and Weller [1984) for
observed deviations from the smooth, vertically sym-
metric, horizontally isotropic, stationary GM spectrum.
No attempts have yet been made to calculate relaxation
rates for such more complicated and realistic distortions.

Relaxation rates of distorted spectra also occur in vari-
ous theories. A background shear flow causes the internal
wave field to become increasingly more asymmetric and
anisotropic. Mtiller [1976] argues that this increase is bal-
anced by resonant wave—wave interactions which tend to
reestablish a symmetric and isotropic state. Such a balance
gives rise to an internal wave momentum flux which is

“-proportional to the shear of the background flow. The

effect of the internal wave on the background flow can
hence be described by wave—induced viscosity coefficients.
To calculate these viscosity coefficients accurately one
needs the relaxation rate for a certain asymmetric and
anisotropic spectrum. This rate has never been calculated.
Using instead the Boltzmann rate from early calculations
of Olbers -[1976], Miiller estimated a vertical internal
wave—induced viscosity coefficient 4, of about 0.4 m? 571
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Ruddick and Joyce [1979] showed from data that 4, can-
not be larger than 0.02 m? s~! in magnitude, and is uncer-
tain in sign. Miiller’s overestimate is, however, not so
much due to his inaccurate relaxation rate but to his
failure to realize that much of the GM76 spectrum shows
equipartition of wave action in vertical wave number space
and hence does not interact with vertical background
shear. His estimate of the horizontal viscosity coefficient
is Ay = 10 m?s™', smaller than the recently observed
value of 100 m?s~! [Brown and Owens, 1981] which is,
however, hard to reconcile with the observed long lifetime
of some mesoscale features.

C. S. Coxand C. L. Johnson (unpublished manuscript,
1979) suggested that internal wave energy does not radiate
but diffuses in physical space, in much the same way that
heat diffuses in crystals. The reason for this diffusion lies
in the nonlinear wave—wave interactions, or
phonon—phonon interactions in crystals. The specifics of
Cox and Johnson’s theory require the relaxation rate for
an anisotropic spectrum, More recently, Eriksen, [1985]
calculated the spectrum which results when an incident
GM spectrum is reflected off of a sloping bottom and
showed that it grossly differs from the incidental spectrum.
The reflected spectrum exhibits strong enhancement and
horizontal anisotropy over a frequency band centered at
the ‘critical frequency. Within a few hundred meters off
the bottom the spectrum is observed [Eriksen, 1982] to
relax back to its GM form, supposedly by nonlinear
interactions. Relaxation calculations for the reflected spec-
trum have not been carried out yet. Since the observed
adjustment is so rapid, a comparison of the calculated and
observed relaxation might provide a critical test for
theories of nonlinear interactions.

Validity

The McComas and Miiller [19815] balance and all the
other work described in this section are based upon the
resonant interaction approximation (RIA). As discussed,
almost all of the possible interactions are off—resonant,
and thus not described by RIA. However, for sufficiently
small amplitudes, resonant interactions become very much
more efficient than off-resonant interactions. For
infinitely small amplitudes the transport equation (32)
becomes exact. The outstanding question then is whether
or not RIA is applicable for actual oceanic wave ampli-
tudes. To answer this question one has to check whether
or not the various suppositions leading to the RIA tran-
sport equation are met for actual oceanic amplitudes. A
rigorous test is the comparison of the theoretical bispec-
trum arising from RIA interactions with the actually
observed bispectrum [(Hasselmann et al., 1963]. Unfor-
tunately, numerical computations by McComas and Briscoe
[1980] indicate that the level of the bispectrum is too low
and too contaminated to be detected by any reasonable
observational programs. The validity of RIA has thus
been assessed (and criticized) using simplified criteria. _

One such simplified critexﬁon for the validity of RIA is

viw < 1 (69)

The nonlinear transfer rate » of a given wave should be
smaller than the frequency of the wave. How well a cri-
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terion such as (69) needs to be satisfied is not known.
Simple heuristics might suggest that nonlinear transfer
ought not modify a wave by O (1) on a time scale shorter
than the wave period 27/w, suggesting that the right side
of (69) be more of the order of (27)~!. However, even
the applicability of these criteria is open to question, as we
will discuss below. Holloway [1980] applied a criterion
such as (69) to the early calculations by McComas [1977].
Given a GM background spectrum, McComas made RIA
calculations for the relaxation of a narrow—band perturba-
tion (“‘spike’’) to the spectrum. At high—frequencies and
high wave numbers it was found that the spike relaxation
time was very much less than a wave period. See Fig-
ures 6 and 11 where the ranges are indicated in which »
exceeds w. Holloway [1980] then pointed to the McComas
spike experiments to argue that RIA is not applicable at
GM amplitudes.

A couple of points of ambiguity need be noted. McCo-
mas and Miiller {1981a, bl have argued that RIA could
remain valid for a smoothly varying spectrum such as GM
although invalid for spike type features such as those of
McComas [1977]. On the contrary, as mentioned by Hol-
loway [1980] and developed more carefully by Holloway
[1982], the fast process of spike relaxation does remain
appropriate for smooth spectra, although the relaxation
process may be masked by other fast processes of
wave—wave excitation.

‘Another point of ambiguity arises because the GM spec-
trum is quite “‘red,”’ i.e., most energy is concentrated at
low wave numbers. It is this energy at low wave numbers
which contributes substantially to the fast interaction rates
at high—wave numbers. Yet, is it the case that these
high—wave number waves are being created and destroyed
so rapidly? A similar question occurred during the early
development of modern turbulence theory [Kraichnan,
1965; Kadomtsev, 1965] and is discussed in relation to
finite amplitude wave—wave interactions by Holloway
[1979]). The concern is that the interaction rate reflects, in
part, advection of short waves by large—scale velocity
fields due to energetic long waves. If treated deterministi-
cally and in the limit of infinite scale separation, the result
is to Doppler—shift the frequency by 8w =u-k. How-
ever, statistical treatments recognize only large—scale
energy, hence rms speed u, leading to a frequency
broadening by ‘‘random Doppler shifting’” u -k which
appears in v. To the extent that high interaction rates may
describe a random but coherent quasi—translation, it
would seem possible that RIA is not so severely violated.

The third point of ambiguity is that the criterion (69)
might not be adequate. The ratio »/w describes how well
waves are fit by the linear dispersion relation, i.e., how
closely the energy is distributed around the dispersion
curves (see Figure 1). For a randomly forced oscillator

the criterion for the validity of RIA is [Van Kampen, 1981]

(70)

Here, v, is the interaction rate roughly identifiable with v
above, and 7. is the correlation time of the random force.
The parameter »;7. is called the ‘“‘Kubo number” {Kubo,
1962]. The equations describing nonlinear wave—wave
interaction are certainly more complicated than the sto-
chastic oscillator equation, yet it is reasonable to expect

vy Te << 1



MULLER ET AL.. NONLINEAR INTERACTIONS AMONG INTERNAL GRAVITY WAVES

that a simplified criterion for the validity of RIA will
involve a product of a nonlinear interaction rate with a
correlation time of the “‘background,” instead of (69). In
most situations it is, however, hard at best and perhaps
not even meaningful to define the ‘‘background” and a
single correlation time scale.

Ideally, we would hope that a theory for finite ampli-
tude, or ‘‘strong,”’ interactions could be developed. If
such a theory contained RIA as a limit, then the domain
of validity of RIA as well as the nature of breakdown of
RIA could be examined. One such analysis described by
Holloway [1979] shows that the criterion of validity of RIA
will involve a “‘group period” defined by a characteristic
group length divided by group speed. Then it is seen that
the product of transfer rate by group period must be less
than unity to support RIA. This restriction may be more
severe than (69).

There is a further worrisome possibility that RIA may
be a ‘‘singular’ limit of finite amplitude theory (though
not in a mathematical sense), and thus could lead to quali-
tatively as well as quantitatively incorrect results. Car-
nevale and Frederiksen [1983] make the interesting obser-
vation that, if the frequency resonance condition is strictly
imposed, then resonant wave—wave interactions preserve
(linear) vertical wave momentum [ dk E k) (k/w).
However, if slight off-resonant interactions are permitted
then, after sufficiently long time, vertical wave momentum
may be quite altered. In this sense Carnevale and
Frederiksen suggest that resonant interactions are a
“singular’’ limit of weak interactions.

Both the high interaction rates at high—wave numbers
and the conservation of linear vertical wave momentum
have cast considerable doubt on the RIA calculations and
spurred efforts to explore the alternate approaches dis-
cussed in the next three sections.

4. STRONG INTERACTIONS

Major impediments stand in the way of accomplishing a
successful, strong interaction theory. First, the deductive
basis for such a theory is not at all well established.
Second, the technical complexity and, especially, computa-
tional requirements will be difficult to overcome. Here,
we sketch some considerations and some of the efforts
made to date to extend the resonant interaction approxi-
mation (RIA).

Given the uncertain state of development, this section is
necessarily eclectic. Systematic derivations following the
direct interaction approximation (DIA) have only been
carried out to a point, the most thorough evaluation being
performed under a two—dimensional (vertical plane) ideal-
ization. To provide a broader view, we recall certain clas-
sical con ions from stably stratified turbulence, i.e., a
limit of very strong interaction. Further, it is seen that
some results from DIA will suggest an alternative to the
more classical stratified turbulence theories. Finally, these
developments may be related to the previous discussion in
section 3 concerning dissipation and diffusion.

Holloway [1980, 1981] speculates that two steps will be
needed. First, all RIA efforts thus far have been based
upon a Lagrangian derivation of the equations of motion
which consists of an expansion in powers of the small
fluid particle displacements about hypothetical equilibrium
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positions. Hence, there is already a small amplitude res-
triction built into the derived equations of motion. More-
over the Lagrangian derivation omits modes of motion
associated with zero eigenfrequency, i.e., the vortical
motion field. Interactions among internal waves and vorti-
cal modes loom as one of the important questions to be
addressed by a strong interaction theory. To meet these
challenges may require returning to a formulation based
upon the Boussinesq equations for the evolution of the
velocity and density fields. The second item raised by
Holloway is the need to carry out a renormalization of the
spectral evolution equations in the spirit of the DIA of
Kraichnan 11959]. The random Doppler shift problem,
mentioned in the previous section, is a known defect of
DIA and may pose special difficulty for the renormaliza-
tion of internal wave interaction theory. Whereas Hollo-
way [1980, 1981] offers only speculative suggestions,
actual calculations using the DIA equations have been
made by DeWitt and Wright [1982, 1984} and by Carnevale
and Frederiksen [1983].

Direct Interaction Approximation

DeWitt and Wright (1982, 1984, hereafter DWW] do not
attempt to deal with arbitrarily strong interactions but
rather seek to obtain a small~amplitude correction to RIA
and, in so doing, to provide a broader interpretation of
RIA methods and results. DWW adopt the
Lagrangian—derived equations after Olbers [1976}, and
procced to obtain evolution equations for the
ensemble—averaged second—order correlation and
response functions. Methods followed by DWW are in
the spirit of quantum field theory [Kadanoff and Baym,
1962], following particularly the Feynman path integral
formalism after Phythian [1977). In the language of
diagrammatic expansions, by retaining the lowest—order
propagator renormalization and omitting vertex renormali-
zation, DWW write out the DIA equations for the prob-
lem as posed by Olbers. (Note our previous caution that a
truncated Lagrangian derivation already. has a
small—amplitude limitation and an incompleteness prob-
lem.)

However, even at this level of approximation, the equa-
tions require inordinate computer effort to evaluate, so
DWW consider a more limited problem. In the DIA
equations there occurs an expression for ‘‘self-energy,”
denoted £,k w) by DWW. In the RIA limit, 3; reduces
to the damping rate v, (see equation (35), which is
independent of w. The defining equation for £, contains
X, itself. When I; = v, is substituted DWW find a I,
with a strong dependence on w in the induced diffusion
region. When they solve self—consistently for a
frequency—independent Z,, as in their second paper, they
find a value for I, which differs from »,. Both these
results suggest that corrections to the RIA are important.

~On a more general level, DWW both establish the connec-

tion between internal wave interaction theory and more
general methods of physics and also reveal the substantial
difficulties that will be anticipated in efforts to devise an
adequate strong interaction theory.

A different and rather a bold effort has been undertaken
by Carnevale and Frederiksen [1983, henceforth CF] fol-
lowing the formalism from Martin, et al. [1973]. In order
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to pose a more tractable problem, CF consider a
two—dimensional idealization in which all motion is res-
tricted to lie in a vertical plane. Although this restriction
is certainly unrealistic with regard to oceanic internal
waves, the remaining problem is non—trivial and allows
exploration of strong internal gravity wave—wave interac-
tions. Moreover, as will be seen in section 6, the vertical
plane problem has received substantial attention as an
object for numerical simulation. Explicit testing of
theoretical hypotheses becomes a possibility, as seen in the
works by Frederiksen and Bell [1983, 1984].

CF make their derivation from the Eulerian field equa-
tions for density and vorticity, thereby avoiding amplitude
and completeness questions associated with
Lagrangian—based derivations. Linear recombination of
density and vorticity allows the problem to be recast in
complex wave amplitude coefficients 4§ (t) where s= =1
denotes nominal left/right~going waves. Mean rotation is
omitted, so wave eigenfrequencies are not bounded away
from zero. CF then develop the DIA equations for the
evolution of second—order correlation and response func-
tions. In addition, CF include slow spatial variation of
average properties and hence obtain terms related to
quasi—homogeneity.

The derivation of CF is rather formalistic. To provide
some interpretation, further simplifying assumptions are
made. The problem is limited to single time correlations
while reference to response functions is omitted by assum-
ing a ““fluctuation—dissipation relation” [Leith, 1971}
between the response function and two—time correlation
function. Further, CF assume no cross—correlation
between left— and right—going waves of equal k. It should
be emphasized that the latter assumption, termed ‘‘diago-
nal dominance,” is not necessary and was only made by
CF for convenience and clarity of results. The assumption
of diagonal dominance places a small—amplitude restric-
tion in a theory which, otherwise, might describe very
strong interactions. In particular, cross—correlation of
left— and right—going waves is the mechanism which sup-
ports vertical mass flux. However, should one consider
nondissipative absolute statistical equilibrium, then the
vertical mass flux will vanish and diagonal dominance will
be satisfied for large—amplitude motions also.

A main point in CF is to obtain a quantity termed *‘triad
relaxation time,”’ dc»./xoted <I>,,2,3(k,p,q,X,T) by CF.
Effectively, @ is a_multiplier in the interaction among
waves (ks), 0.s;) and (q,s;) at slowly varying coordi-
nates (X,7). The expression for ® has a form

Dy, &,p,0,X,T) = [#:+n:2+u;3]
) , an
/[[fl§+ﬁ;2+ﬁ«:’] +[u§+.u:2+u;3] ]
where u§ is a relaxation rate or “frequency broadening”
and Q¢ is a shifted mean frequency of mode (k,s).
Expressions for ug and for the shift O ¢ — O, where Q ¢
is the natural frequency at (k,s), are given in terms of

integrals over the energy spectrum. For vanishingly small
energy, ug / Q¢ — 0 and

P, k,p,q,X,T) — 78 [ng+ Q.2+ n.,"] (72)
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so that one recovers the resonant interaction condition, as
noted previously by Holloway and Hendershott (1977], Hol-
loway [1979]) or Carnevale and Martin [1982]. As previ-
ously mentioned, CF remark that if frequency resonance
is strictly imposed, then wave—wave interactions preserve
the linear vertical wave momentum which is not preserved
by the finite amplitude theory.

Buoyant Turbulence

While the purpose of this paper is to review nonlinear
interactions among internal gravity waves, the limit of
very strong interaction is more commonly termed stably
stratified or buoyant turbulence which, from the wave
interactionist viewpoint, must also involve interaction with
the vortical mode. It would take us far afield to review
even a small part of the literature concerning buoyant tur-
bulence. However, one might very well imagine a goal of
strong wave (and vortex) interaction theory to recover a
condition of buoyant turbulence in the limit of large
amplitudes, especially as the DIA approach and variants
thereon are known to exhibit some skill for the limiting
case of neutrally stratified turbulence.

Briefly we recall classical concepts from Monin [1962] or
Lumley [1964]. A central tenet since Richardson [1920] is
that stable stratification suppresses turbulence by expend-
ing turbulent kinetic energy to perform work against grav-
ity via a vertical mass flux. This work (per unit mass) is
gp~'p'w' = NPEw', with £ the vertical displacement.
Lumley [1964] assumed that £w' was not modified by the
stratification, so that its spectrum is proportional to
€Y? k=73 by dimensional analysis. Following arguments of
Kolmogorov [1941], and taking account of the energy lost
to mass flux, he predicted a kinetic energy spectrum

Ek) = Aed? [1+ /YY) k53 (73)
where 4 is the empirical Kolmogorov constant, ¢, is the
kinetic energy dissipation rate by viscosity and
ky = (W¥eg)”, the buoyancy wave number, up to a con-
stant factor of order unity. Oceanic vertical wave number
spectra reported by Gargetr et al. [1981] are indeed quanti-
tatively consistent with (73) in the wave number range
around k ~ 1 cpm.

A possible difficulty for the classical theory was sug-
gested by Phillips [1965] who argued that the development
by Lumley ought to predict a temperature—varianced spec-
trum Q (k) varying as k~! over k < k, whereas oceanic
observations such those of Gregg [1977] indicate vertical
wave number spectra Q « k73 on kg < k < k, where &,
is an outer scale. Recently, Weinstock [1985] pointed out
that Phillips chose an inappropriate limit for an integra-
tion. Weinstock shows that on reconsideration one
obtains Q (k) taking the same form as E (k) in (73), thus
consistent with the observations of Gregg. A further
consequence of Weinstock’s analysis is to predict a rever-
sal of sign of temperature variance transfer such that vari-
ance is transferred toward lower wave numbers for
k < k.

Of concern here are possible implications of these classi-
cal turbulence theories relative to wave—wave interaction
theories. The crucial difference is the role of the mass
flux p'w’ whose cospectrum, denoted B(k), is given by
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Lumley:

BU) « Neo[t+ G/t 67 )
To support such a cospectrum by wave-wave interaction
requires a cross—correlation between waves whose fre-
quencies must be shifted off the natural (linear) frequen-
cies. B(k)# 0 requires strong wave interaction. A
difficulty is that B (k) increases with decreasing k as k3
from (74) whereas one expects weaker wave—wave
interaction, hence smaller B (k), at larger-scales.

A second difficulty concerns the transfers of kinetic and
potential energies implied by buoyant turbulence theory.
Lumley’s theory impliés a large transfer of kinetic energy
toward high & while Weinstock’s theory implies that the
kinetic energy transfer is accompanied by a transfer of
available potential energy (as temperature variance)
toward low &, i.e., of opposite sign from the kinetic energy
transfer. Wave—wave interactions discussed in section 3
were seen to predict like—signed transfers both of kinetic
and potential energies toward high k. Obstacles to a pos-
sible synthesis of wave—wave interaction and turbulence
theories are thus apparent.

The buoyant turbulence theory of Lumley together with
the discussion by Weinstock were seen to predict velocity
and temperature spectra in some agreement with oceanic
observations. However, vertical mass flux increasing with
decreasing k as well as oppositely signed transfers of
kinetic and potential energies are also implied.

A different account of buoyant turbulence has been sug-
gested by Holloway [1983). His suggestion is that net
work against gravity plays no significant role in the ener-
getics of buoyant turbulence. Then B (k)}, while nonzero,
is too small to affect the transfer rates of kinetic and
potential energies, which are both presumed to be directed
toward high k. Holloway starts with the wave—wave
interaction theory, and estimates, albeit speculatively, the
triad relaxation time (71). For sufficiently strong interac-
tion, proximity to resonance is not important and one may
scale :

Qe+ 0, + Q) = N2 (75)

in (71). Assuming dominance by wave number local
interactions, he further followed Lumley in taking relaxa-
tion rates to obey Kolmogorov scaling. In (71)

=~ V3 }%3

1IN T TS (76)

where € is the transfer of kinetic energy from scales < &
to scales > k but unlike Lumley’s assumption, this may
be approximated by the dissipation rate eg since € is nearly
independent of k given negligible B (k).

Expressions (75) and (76) are only suggested to be
approximate within some order unity coefficients.
Nonetheless, assuming that efficiency of turbulent
transfers of kinetic and potential energies should be multi-
plied by some

€ &/3 k?JB
N+ ed kY3
and assuming small B(k), Holloway [1983] shows that

both velocity and temperature spectra should take just the
form (73). As previously noted, this is quantitatively con-

o = an
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sistent with oceanic observations. A discriminating test
will have to be based upon observation of B (k).

Dissipation and Diffusion

We return here to the discussion from section 3 con-
cerning dynamical balances. It was seen that weak wave
or resonant interaction studies implied an energy
throughput rate Qg , hence dissipation rate, proportional to
N A corresponding implication was that vertical
diffusivity K, be nearly independent of N. In the context
of a wave—wave/buoyant turbulence theory described in
the preceding section, Holloway {1983] sought to address
these relationships by requiring that spectra (73) be
matched to GM levels at a wave number (10E45)"! fol-
lowing Munk [1981]. Such a match may be obtained with
no imposed relationship between €y or K, and N, since
E (k) = A N3 independent of eg for k < < k,.

A different approach to this question was pursued by
Gargett and Holloway [1984, hereafter GH]. Consistently
with the preceding discussion which sought a synthesis of
waves and turbulence methodologies, GH also avoid the
classical Reynolds decomposition into ‘‘turbulent” and
“mean” fields, the latter sometimes presumed to include
internal wave motion. GH work with the kinetic energy
density equation. They neglect horizontal divergences and
the pressure—velocity correlation and assume that a flux
Richardson number defined as

Po P
T

i a t
is small compared with unity. The dissipation rate is then
balanced by the vertical divergence of the energy flux and
may hence be approximated

R = i=12 (78)

%
I

gz

€ =~ —uw = ¢ |77 | 2% 79)
(74

with C, a triple correlation coefficient. Assuming WKB
scaling for 17,! and w2 and assuming that shear variance
(©u;/9z)? is limited by N?, GH assert that no other intrin-
sic time scale is available by which to form a nondimen-
sioned quantity and that hence C, is independent of N.
The result is € « N with K, « N~!. A similar develop-
ment is applicable to temperature variance dissipation.
Although observations cited by Gargert [1984] are con-
sistent with results obtained in this section, the disparity
from results in section 3 remains to be reconciled. Certain
consequences of these differences may have wider implica-
tions. A familiar practice consists of estimating vertical
diffusivity from measured temperature variance dissipation
rates, following Osborn and Cox [1972] who equate dissi-
pation with production due to vertical heat transport.
“However, the account suggested by Holloway [1983] or
seen in GH shows that observed turbulence and dissipa-
tion may be consistent with a hypothesis of no significant
(i.e., very small) heat transport. Rather, dissipation would
be balanced by vertical divergence of wave—supported
energy flux. On the other side, the result of Weinstock
[1985] would imply heat transport significantly greater
than that inferred from dissipation.
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S. SCALE-SEPARATED INTERACTIONS
Induced Diffusion

MeComas and Bretherton [1977, henceforth MB] were
the first to identify the importance of scale—separated
interactions within the internal wave field. They identified
the induced diffusion mechanism that governs the interac-
tion of small-scale internal waves with large—scale inter-
nal waves. The fundamental equation in MB’s study was
the Hasselmann transport equation (32). MB therefore
emphasized the weak interaction assumption. If scale
separation is also assumed, the full transport equation
reduces to a much simpler diffusion equation for
small—-scale wave action in wave number space. The
diffusion is induced by the large—scale components of the
wave field. According to weak interaction theory, the
diffusivity tensor is given by a weighted average over the
large—scale wave spectrum:

Dy = f dK < KUy -k K Ug -k >3 (@—v-K)
(80)

Here we have introduced the notation that capital letters
Q, K, and U refer to the large—scale ‘‘background,” and
lower—case letters w, k, and u refer to the small—scale
“‘test wave.”” U is the background velocity, ¥ is the group
velocity of the test wave. The tensor element correspond-
ing to both i/ and j being vertical coordinate indices dom-
inates all other elements. In an isotropic background, the
important diffusivity is therefore

p= £ [ &K2<UE> 5 @-vK)
8D

The shear spectrum of the background is weighted with
the resonant delta function. If the shear is assumed to be
concentrated at inertial frequencies (as is the case for the
Garrett and Munk spectrum) we obtain the McComas and
Miiller [19815] form (41) of the diffusion coefficient.

The Eikonal Approach

Since the weak interaction assumption has been called
into question by Holloway [1980, 1982] and others, Henyey
and Pomphrey (1983, henceforth HP] have initiated a study
of induced diffusion which emphasizes the scale separation
assumption, but makes no weak interaction assumption.
The technique used by HP is a Monte Carlo integration of
the eikonal or ray equations. The eikonal or ray tracing
technique has been used for internal waves propagating in
a low—frequency or steady geostrophic current (e.g.,
Miifler, 1976, 1977, Olbers, 1981], but has not previously
been applied to the interactions within the internal wave
field.

The eikonal or ray tracing technique consists of imagin--
ing a decomposition of the small—scale part of the wave
field into wave packets, each with a small spread of wave
numbers, centered on a value k and occupying a region
near some point x. Wave packets (generally with different
k) can overlap, and fill space, and in the approximation
that the test wave field is of low intensity, can be regarded
as independent of each other. The evolution of the
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small—scale wave field is constructed from the motion of
individual wave packets as they move through the
large—scale background.

The ray equations are defined by a (Eulerian) frequency
function

o =c+U 'k 82
and the set of equations
;i = do _ 8o
x oK ok +U (83a)
i = — 00 _ _do 0 .
k 9 ox o U-k (830)

The function « includes the “‘intrinsic’’ frequency o and
the Doppler shift U - k. The intrinsic frequency is given
by the internal wave dispersion relation
21,2 2.2 )%
a=[———"”‘;+f'°‘] (84)
ki + Kk}
If the wave packet is described in proper variables the
interaction with the buoyancy field of the background
waves can be removed [Henyey, 1983). The N? in (84) is
then the Brunt—Viisild frequency of the basic state and
the interaction of the wave packet with the background is
entirely due to the Doppler shift term.

The ray equations (82) and (83) are of Hamiltonian
form, where the Hamiltonian can be chosen as H = Aw,
and the momentum as P = 4Ak. A4 is the wave action of
each packet, and is conserved along packet trajectories.
The relationship of H to the wave energy and of P to the
Stokes drift is discussed in detail by HP.

Each term in the ray equations has a simple interpreta-
tion. The velocity X is the sum of the wave group velocity
and the advection by the background flow. The evolution
of the wave number, k, is the sum of the WKB scaling
term and the shearing of the waves by the background.
The most important part of the transport comes from the
vertical shear of horizontal current

ﬁz = - azU;, N kp, (85)

The ray equations do not constitute a transport theory;
the average over the ensemble of background flows has
yet to be done. However, if one assumes that interactions
are sufficiently weak, a transport theory can be derived for
the ray equation which, to lowest order, recovers induced
diffusion. By any of a number of formalisms, it can be
shown that a Hamiltonian system weakly interacting with a
random background undergoes diffusion in phase space.
Each packet in the ensemble of background flows
separately undergoes diffusion, and since the action of
each packet is conserved, it is the ensemble—averaged
action density which diffuses. The diffusivity is given by
the integral along straight—line trajectories of the auto-

_correlation function of the perturbation of phase space

velocity. Specializing to wave number diffusion (and
ignoring the small, deterministic, WKB scaling term) we
obtain

Dy =£d~r <9 Uk, k a,U[x—%-T,t._,-].k >
(86)
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Fig. 14.

(a) Vertical wave numbers and (b) depth of small—scale waves as a function of time for three realizations

of the background flow. Two of the three trajectories show large excursions in k,, which are interpreted as
approaches toward a critical layer. The integration is terminated when the vertical wavelength falls below the cutoff
value A = 2n/| k,| = 5 m [from Henyey and Pomphrey, 1983].

Upon expressing each U in terms of its Fourier transform,
we recover the MB result, equation (80).

Instead of deriving an approximate transport theory, HP
perform a Monte Carlo simulation of internal wave tran-
sport by integrating the *‘exact” ray equations (83), and
obtain average (transport) properties by averaging over
trajectories. The initial wave number and frequency of the
wave packet were chosen to lie in the induced diffusion
kinematic regime, and the background was chosen to
model the Garrett—Munk spectrum. Specifically, HP
chose T

k,(0) = 40b7!
c@ = 15f

k, (0) = 58p7!
z(0) = —b

where b=1.3 km is the e—folding scale of the Viisild fre-
quency N(z), and f is the inertial frequency. The back-
ground was formed out of a superposition of 50 linear

waves whose frequencies and wave numbers were selected
by random uniform sampling from the GM spectrum, with
a cutoff in vertical mode number corresponding to
Jj = 250. The integration was terminated when the vertical
wavelength fell below the cutoff wvalue of
A= 2m/| k] = 5m. Results consisted of both explicit
phase space trajectory plots in single realizations of the
background (Figure 14), and averages taken over 50 back-
ground realizations (Figure 15).
_. The results for this model indicate that changes in verti-
‘cal wave number magnitude are very significant. There is
a mean motion of k; to large values, with the same sign as
at ¢ = 0, and fluctuations about that mean. The individual
excursions in k, (see Figure 14) are of large magnitude
and are a striking feature of the results.

Results such as these led HP to suggest a picture of
transport of small—scale oceanic internal waves which is
very different from the traditional weak interaction view of
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Fig. 15. (a) Average vertical wave number and (b) average intrinsic frequency as a function of time. The average
(denoted by angle brackets) is taken over 50 realizations of the background. Breaks in the curves correspond to
“critical layer events’ when the vertical wavelength falls befow the cutoff value A = § m [from Henyey and Pom-

phrey, 19831.

diffusion in wave number space. This picture is best
understood in a grossly simplified model which does not
change the results in any important way. If
k, << k, << k, (N/f), which is true over most of the
spectrum, the dispersion relation for internal waves can be
simplified to '

kx
= N|-— 87
so that the vertical group velocity is
i= =N -%| sgn (k,) (88)

- Let us, for the moment, ignore the horizontal and time
dependence of the background flow, and concentrate on
its vertical dependence. The vertical wave number of the
test wave evolves according to

k= —3,U, -k,

which is a function of z. If the test wave finds itself in a
region in which k, increases, its vertical group velocity 2
decreases, and it tends to stay in the same region. If the

(89)

region is large enough, k, will tend to infinity linearly in
time, and 7 will be proportional to 1/¢%; therefore z will
tend to a critical layer value z.. This situation will persist
until the time and/or horizontal dependence of the back-
ground removes the critical layer. The picture of HP is -
that such “‘critical layer events™ are a major part of the
transport through wave number space. The large excur-
sions of k,, shown in Figure 14, are interpreted by HP as
such events. A diffusion picture, on the other hand,
would correspond to the evolution of k, for each realiza-
tion taking place in small steps, giving rise to a random
walk.

Two roughly defined time scales, the correlation time 7,
and the interaction time r;, can be deduced from (86). In
a certain sense (not to be discussed here) there exists an

“exact” diffusivity, with a value given by the integral

along the actual phase space path:
D, = f dr <9, Ulx, 1} - k8,
0 .
(90)
(xG=1),t=7) kGt—1)>
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The correlation time 7. is the scale of + which contribute
because the correlation function is large forr < 7.. Ifitis
true for times 7 < 7. that

x(t—71) =

91)
k(t —71) = k@)

then (86) follows. The interaction time 7, is the time
required for at least one of the equations in (91) to be
violated. Thus (86) requires 7, < 7;.

HP assume that the action is only changed when the
vertical wave number of the wave packets gets large, at
which point it becomes unstable. Broutman [1984], on the
other hand, suggests that caustics might also lead to strong
nonlinearities resulting in instability. His considerations
are based on ray tracing for deterministic problems. His
estimate for the energy concentration, which is propor-
tional to the nonlinearities, is taken from the ray tracing.
He neglects the diffractive spreading at a caustic as well as
the random effects. Thus his interesting suggestion really
remains untested. Statistical properties of intensities at
caustics for other random wave problems have been
worked out [Berry and Upstill, 1980] and this work ought
to be extended to the internal wave problem. Alterna-
tively, caustics and intensities could be caiculated by ray
tracing. As a ray approaches a caustic, the maximum
intensity at the caustic is given by the ray tracing intensity
a distance L before or after the caustic, where Landau and
Lifshitz [1975] and a little algebra)

L = 02\V3RY3 92)

In this expression A is the wavelength and 1/R is the
difference in curvatures of the caustic and the ray.

The Meiss— Watson Transport Theory

Meiss and Watson (1982, henceforth MW] developed a
transport theory for internal test waves propagating in a
random internal wave background based on the assump-
tion that the correlation time is much smaller than the
interaction time. The test wave group velocity can be con-
sidered constant over a correlation time. MW therefore
make a weak correlation approximation. The weak correla-
tion assumption implies a diffusionlike picture of the tran-
sport. The test waves take small steps in phase space,
with an uncorrelated forcing at each step. If specialized to
transport in vertical wave number space MW’s transport
equation for the density of waves p (k,) takes the form

dip ) = 2f dK,dk’ G G k'K, 1)
93)
8k + K, — k) [o ) = p (k)]

The kernel G does not contain any memory effects
because of the weak correlation assumption.

Comparison

A comparison of induced diffusion (in the sense of
McComas and Bretherton [1977)), the eikonal Monte Carlo
calculations of Henyey and Pomphrey [1983], and the tran-
sport theory of Meiss and Watson [1982] was carried out
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by Henyey et al. [1984, henceforth HPM). HPM chose a
model for the background which includes only large verti-
cal wavelengths (a background mode number cutoff at
J = 20 was imposed). This enforced scale separation was
to ensure the validity of the eikonal calculation. The
eikonal results are therefore “‘exact,” and can be used to
test the validity of the other two theories. The HPM
model ignores horizontal space dependence of the back-
ground, and chooses all background frequencies equal to

f.

In general, there are two differences between the
Meiss—Watson theory and induced diffusion. The first of
these involves the scale separation approximation

0k+K) = 0k)+K -8 0k) (94)

where Q is any quantity depending on k. MW do not use
this approximation, but retain finite K. Thus, MW obtain
the integral transport equation (93) where induced
diffusion obtains the differential diffusion equation (40).
If scale separation is strictly true, which it is for the HPM
model, however, this difference between MW’s theory and
ID is insignificant. Indeed, if we assume that replace-
ments such as (94) are valid the MW integral transport
equation {93) becomes equivalent to the diffusion equa
tion '

0 p = akzD(kzat) akzP (95)

where D (k,,t) is a time—dependent vertical diffusivity.
The second difference between the Meiss—Watson
theory and induced diffusion is that the diffusion
coefficient in (40) is time independent whereas the kernel
G in (93) and the diffusion coefficient in (95) are time
dependent. ID assumes that the test wave is initially
correlated with the background when it appears in the ID
kinematic regime while MW assume it is uncorrelated.
Thus, the time integration in (86) for the ID diffusivity
starts at t —r = —oo. (Whether this makes sense depends
on the generation process for the test waves.) The
time—dependent diffusion coefficient in (95) can be
obtained by starting the integral at t—r = 0. MW show
that the time dependence gives rise to initial transports
that are slower than ID predicts. Figure 16 shows the ini-
tial decay rate of the autocorrelation function of the test
wave amplitude. and compares it to the ID decay rate.
HPM choose a different means of comparison and are
led to the same conclusion. They solve the diffusion
equation (95) with the initial condition
p(t =0)=8(k,~ 58", corresponding to mode number
50 at a depth of »=1.3 km. The boundary conditions are
determined by the observation that resonant kinematics
limits the possible k, values. The rescnant condition is
that the phase velocity of the background equals the group
velocity of the test wave, O/ K, = do/dk,, with } = f for

“"HPM. Since HPM include only K, < 2347!, and fix the

test wave horizontal wave number k, = 4067, the
resonant condition restricts &, to the range | k.| < 16057!.
During the initial transient, resonant kinematics are not
applicable, but very little action gets beyond this limit.
Thus, the cutoff at K, = 234"! only influences the
diffusion equation by implying reflecting boundary condi-
tions for the diffusion equation at| &, | = 160671
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Fig. 16. Decay rate of the autocorrelation function as a function
of vertical wave number for several frequencies. The dashed
curves represent the initial decay rate according to the
Meiss— Watson transport theory. The solid curves represent the
decay rate for induced diffusion [from Meiss and Watson , 1982].

210

HPM diagonalize the diffusion operator with such boun-
dary conditions:

9D (k1) By U U ut) = — 2, () 4, G t) (96)

The lowest eigenvalue is Ap=0 with -eigenfunction
Yolk, t) = (V2| k,| max)~! Which corresponds to the equili-
brium state of equipartition of action. The smallest
nonzero eigenvalue and eigenfunction determine the final
approach of the system to equilibrium. The dominant
time behavior was found by HPM to be in A,(t) rather
than in ¢, (k;,2). (This was also true of higher eigen-
values and eigenfunctions.) For example, the overlap of
Y (k;,0) with g (k;, ) was found to be 0.9. Since
¥y (k; ,00) = y(k;,0) the solution for the intensity of
this eigenfunction can be written approximately as

P](t) =~ p](O) e—fxl(l)dt 97

A graph of A\ (¢) is shown in Figure 17. The effect of the
time~dependent diffusion coefficient is to delay the
approach to equilibrium. The time delay ¢, is found by
comparing integrals

L

f)\](t) dt = f}q("")dt
0 0

and yields a delay time of about #; = 1/30 of an inertial
period. Apart from this time delay, however, there are no
other significant differences between MW and ID.

Since ID and MW are similar for the model of HPM, a
comparison of the ID results with the eikonal Monte Carlo

(98)
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results is seen to be a test of the weak interaction and
correlation assumptions made by ID and MW, but not
made by HP. The same parameter set was used by HPM
for the eikonal and ID calculations. Figure 18 shows the
comparison of the eikonal results with those of ID for
average and rms vertical wave numbers as functions of
time. As can be seen, the results are grossly different.
Additionally, the eikonal results show higher transport
rates and no respect for the resonant kinematic bound of
|k,]< 16057). Nonresonant effects are clearly important
for a significant time period. A more ‘‘deterministic”
transport is generally much faster than a random diffusion.
Thus the faster rates shown by the eikonal results, which
are ‘‘exact” for the chosen model, support the picture
proposed by HP in which the transport is dominated by
‘‘critical layer events.” It also indicates that the weak
interaction and correlation assumptions of ID and MW
which led to a diffusion picture are not valid.

The inadequacy of the ID theory (or of MW) should be
obtainable from the perturbation expansion that derives it.
We have noted in section 3 that the relevant expansion
parameter for simple stochastic differential equations is the
‘“Kubo number” v, t., where v; is a nonlinear interaction
rate, and 7, a correlation time of the random force. One
might think of evaluating the Kubo number for the
induced diffusion problem; however, this presents a
number of problems. Both v; and 7. are hard to estimate
at best, and perhaps not even very meaningful. The
decorrelation of the force [a, U &,t) -k] depends on the
motion of the wave packet through the random back-
ground. The velocity of the background has structure on
a wide range of vertical scales, and, as can be seen from
the eikonal calculations (see, for example, Figure 14), the
group velocity of a packet evolves in a complicated way.
Thus, there is no easy way to estimate a single correlation
time which characterizes the interaction. The interaction
rate v; to be used is also ambiguous. The rate at which
energy leaves a mode is an upper bound on this rate, but
might overestimate it. If the energy goes to another mode
with nearly the same frequency and then returns to the
original mode before the frequency difference has time to
decorrelate the phase, it is just as if no interaction has
occurred, so v; should be smaller. Finally, the Kubo
number is only a meaningful quantity to study in isolation
if the coefficients which multiply this expansion parameter
in the perturbation series are of order unity. These
coefficients involve commutators of diffusion operators,
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Fig. 17. The Meiss—Watson diffusion rate A; as a function of
time (solid curve). After r > 0.22 inertial periods the diffusion
rate has reached its asymptotic value of 4.86x 103 (dashed line)
[from Henyey et al., 1984].
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" and it is possible ‘to invent models for which the Kubo
number is arbitrarily large, but weak interaction theory is
exact because the commutators vanish.

The alternative ‘to estimating the Kubo number itself is
to estimate the size of the corrections to ID by going to
the next order in perturbation theory, and comparing the
new term with the old. HPM carried out this calculation
using the Van Kampen formalism [Van Kampen, 1981],
restricting their calculation to finding the correction to the
vertical wave number diffusivity.

The integral for the diffusivity (equation (86)) is carried
out along the constant velocity line
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However, the wave packet experiences a force along its
trajectory which causes it to differ from the straight—line
extrapolation. The correction to ID (and ) arises
from the difference between the two paths. HPM
estimated the magnitude of the first correction to the
diffusivity by a calculation including the diffractive spread-
ing of the trajectories between t—r and ¢. To obtain con-
vergent expressions for the corrections to the diffusivity
HPM use a Gaussian cutoff in the background at j = 20
rather than a step function. The comparison between the
induced diffusion prediction for the diffusivity and its
correction is shown in Figure 19. The correction is not

z(t—7) = z(t) — v()r

100
100 T T

{a) A

EIKONAL

40

<k, > (km'l)

o<k, >? (knfl)

2
]
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0 | S 2 3
TIME (INERTIAL PERIODS)

Fig. 18. (a) Average and (b) root—mean—square vertical wave
numbers as a function of time for eikonal and induced diffusion
calculation. The average (denoted by angle brackets) is con-
structed from 50 realizations of the background. The eikonal
decay of <k,> is much slower than that of ID, and it is consid-
erably delayed. The eikonal calculation also predicts a much
higher level of the root—mean—square vertical wave numbers
than does ID, and takes considerably longer to become esta-
blished [from Henyey et al., 1984].
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Fig. 19. Comparison of ID diffusivity D, (solid curve) with
“second Van Kampen” correction (dashed curve). The correc-
tion is not small {from Henyey et al., 1984].

small. It is also seen that the background cutoff does not
induce a cutoff in the correction. Presumably
higher—order corrections are larger still, and nondiffusive
terms in the transport equation (those with other than two
k, derivatives) are as large as the corrections to the
diffusivity term. It appears that the perturbation expan-
sion is badly divergent, and the lowest order term used by
ID and MW badly misrepresents the transport.

Putting in the Garrett—Munk spectrum and a Gaussian
cutoff, both of which were used in the comparison of Fig-
ure 19, HPM find

2 N, Ebk? 2

D correction & dv

D[D f V3 dkz

times an integral which numerically evaluates to order one
for all k,. The GM mode number parameter is j» = 3, £
is the dimensionless energy density of the background
flow, E = 6.3x 1075, and & is the e~folding scale of
N(z), b= 1.3 km. According to the ideas from simple
stochastic differential equations, one should interpret the
quantity on the right—hand side of (100) as the square of
a Kubo number. HPM were unable to use such an
interpretation to identify »; and r.. Presumably the wide
range of correlation time scales and interaction time scales
is responsible for the absence of a simple interpretation.

(100)

Under the simplifications (87) and (88), with
N/ f = 50, (100) reduces to
Dcorrection ﬁ
Do 600 m[ o ] (101)

HP suggest that the scale separation assumption is not too
bad for 2m/k, < 1000 m. Thus, throughout this region,
the correction is not small compared to induced diffusion.

___.Both the comparison with the eikonal and the estimate

of the neglected terms in ID suggest that weakly nonlinear
theory does not apply to the transport of small—scale
internal waves in the ocean.

6. NUMERICAL SIMULATIONS

Throughout this paper, we have noted the many
instances of theoretical ambiguity. For the most part,
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such ambiguities arise in areas that appear to be outside of
the domain of validity of theoretical approximation, Slow
time scales of weak interaction appear, in fact, to be quite
rapid. Scale—separated interactions compete with, and
may be overwhelmed by, interactions among like scales.
Strong interaction theories have not been very well
developed in regards to internal wave interaction. More-
over, strong interaction theory rests on conjectures which
are not demonstrably justified. In this section, we turn to
yet another approach, namely direct numerical simulation.

Numerical simulation will here refer to the integration
forward in time of some set of approximate equations for
unaveraged flow fields. Such numerical simulations can
proceed from equations at various levels of approximation.
For example, in section 5 we have considered numerical
integration of eikonal equations. However, the eikonal
equations represent a relatively ‘‘high’ level of assump-
tion, i.e., the assumed dominance of scale—-separated
interactions. Seeking to test the validity of such assump-
tions, research has resorted to numerical integration of the
more ‘‘primitive’’ incompressible Boussinesq equations
with uniform rotation and uniform stratification in the
mean. This research is reviewed here.

All numerical simulations assume a fluid which is
stratified with respect to heat only and admit diffusion
both of momentum and of heat. Heat diffusion may be
considered to be an effective density diffusion upon taking
account of a constant coefficient of thermal expansion.
The equations of motion for velocity and density fluctua-
tions about the mean state are then as follows:

du+u-Vu+fxu+ —g—ip+ —-l—Vp—vvzu =0
Po Po

(1022)
dp+tu-Vp+Rw—«xkVPp = 0 (1026)
Vu=20 (1020

Here R =98p/9z is the assumed uniform gradient of mean
density so that N>= — gR/po. Since a constant N? is
chosen the fine—structure contamination problem (section
2) does not occur.

Equations (102) are suitable for investigating nonlinear
interactions among internal waves whose scales are short
compared with the scale of variation of the mean environ-
ment. Equations (102) also describe strongly overturning,
buoyancy—modified turbulence. Although our goal here is
not to investigate strong buoyancy—meodified turbulence
per se, we . recognize that this is a limit of
large—amplitude, small—scale internal wave dynamics.
The question at hand is how internal wave dynamics gives
way to buoyant turbulence dynamics. More specifically,
how can direct numerical simulation elucidate the dynam-

ics that are intermediate between internal waves and buoy- -

ant turbulence?

Our review is based on five studies [Orlanski and
Cerasoli, 1980, 1981; Riley et al., 1981; Weissman et al.,
1981; Frederiksen and Bell, 1983, 1984; Shen and Holloway,
1986]. Other numerical investigations have addressed
specific mechanisms such as critical layer interactions
[Fritts, 1979, Hirt 1981], Kelvin—Helmholtz instability

L >[c,®)]/v &)
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[Patnaik et al., 1976}, or stability of standing waves
{Orianski and Ross, 1973).

Numerical experiments are similar in many regards to
laboratory experiments and have certain advantages and
disadvantages. Among the advantages are (1) complete
information on the evolution of the flow fields and (2)

_controllability of experimental conditions including con-

tinuous variation of physical parameters.

The principal disadvantage is one of finite computer
resolution. Even on very large, fast machines, it is now
impractical or exceedingly costly to integrate forward in
time more than about 10° variables. This means that a
representation in three spatial dimensions of (102) has
only been practical on an equivalent grid of 32 x 32 x 32
points, say. There being no great disparity between the
largest and smallest scales resolved, it is necessary either
to introduce an ad hoc ‘‘subgrid scale parameterization™
or else to execute at such low Reynolds and Peclet
numbers that the velocity and density fluctuation fields are
strongly damped. Advances in machine capability are
overcoming, in part, these limitations. Simulations of
buoyant turbulence at up to 128° may be performed in the
near future,

A means of avoiding both the computational cost and
the strong damping of the three—dimensional simulation is
to constrain the flow to two dimensions by imposing the
condition that fluctuating velocity and density fields are
independent of one horizontal coordinate. There is no
physical basis for such a constraint. However, as a
two—dimensional problem, resolutions from 64 x 64 to
256 x 256 (or other comparable but nonsquare combina-
tions) are quite practical on many modern machines. The
greater range between largest and smaliest resolved scales
allows sufficient damping of small scale fluctuations while
the large, energy—containing scales are relatively weakly
damped. Most important, perhaps, the several theoretical
approaches discussed in previous sections either are given
in two—dimensional form or are readily restated in
two—dimensional form. Thus, relatively high resolution,
two—dimensional simulations would appear to find a
natural role in theory testing.

Before turning to specific simulation results, we should
recognize one further limitation. The numerical model
requires a specification of boundary conditions. Ideally we
might wish to consider a flow with boundaries removed to
infinity. Or we might consider top and bottom boun-
daries, thereby imposing a vertical modal structure, while
removing side boundaries to infinity. Intuitively we may
imagine that “‘infinity”> only means ‘‘far away.”” Unfor-
tunately, with as few as 32 equivalent grid points across
the domain, boundaries are hardly very ‘‘far away.”
Arguments of Holloway [1979] suggest that boundaries are
*“far away”’ when the scale L of the flow domain is large
in the sense that

(103)

where ¢, (k) is the group velocity at wave vector k and
v(k) is the wave—wave interaction rate at k. To the
extent that weak resonant interaction theory is valid,
v = v, (cf. equation (35)). Inequality (103) should be
satisfied for all energetic k. An interpretation of (103) is
that information, tending to propagate along wave rays,
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should be destroyed by nonlinear interactions over a dis-
tance shorter than the distance between boundaries. A
consequence is that weakly interacting waves, hence small
v or v,, are more difficult to simulate whereas strongly
interacting waves (= turbulence) are easier.

Three— Dimensional Case

In principle, the most direct assault on (102) is a full
three—dimensional simulation. However, for reasons just
outlined, namely the limited computer resolution and high
cost of obtaining such resolution, three—dimensional
simulation is not, at present, a practical means for investi-
gating the oceanic GM environment. Nonetheless,
three—dimensional simulations have been performed
related to the decay of stratified turbulence. We review
briefly the resuits of Riley, et al. [1981], hereafter RMW.,
To our knowledge these are the only such published simu-
lations.

The purpose of RMW was to perform numerical simula-
tions related to laboratory experiments of Lin and
Veenhuizen [1974), Dickey and Mellor [1980] and Stillinger
et al. [1983]. In the laboratory experiments, turbulence is
excited either by horizontally towed bars or grids, or by
vertically dropping a grid, or by forcing a fluid through a
grid. In the frame of reference fixed to the mean fluid,
the situation appears as an initial value problem: at a nom-
inal time ¢t = 0, a state of strongly excited, nearly homo-
geneous, nearly isotropic (presumably) turbulence is
instantaneously imposed upon a uniformly stratified fluid.
For ¢ > 0, no further excitation is imposed. The ensuing
decay is examined.

RMW imitate such experiments by creating a random,
homogeneous, isotropic velocity field as an initial condi-
tion. More specifically, RMW initiate a random phase
vector potential field A (x) such that the velocity field
given byu = ¥V x A has prescribed power spectrum
E, () w ke W% (104)
This velocity field is unlike hydrodynamical turbulence
since none of the straining, energy—cascading character is
permitted due to randomness of phase. Therefore RMW
elect to allow the velocity field to evolve for approximately
one turbulent time scale (L/u) in a neutrally stratified
environment. The resulting velocity field after unit time is
then taken as the ‘‘initial”” wvelocity field. At the
corresponding “‘initial’’ time, the density field is taken to
be just the unperturbed uniform density gradient. The
choice to assume an initially turbulent velocity field with
no corresponding density fluctuation field is open to ques-
tion, RMW justify the choice as roughly describing actual
fields just after passage of the grid.

Specifically, the simulations of RMW consist of (102) in
the case of no mean rotation (f = Q) and unit Prandtl
number (Pr = y/x = 1). The method of integration is
pseudospectral: that is, flow variables are spatially
Fourier—transformed; differential operators are evaluated
algebraically in the transform space; and variables are
transformed by fast Fourier transform (FFT) back to
configuration (physical) space to evaluate local products of
variable fields [cf. Orszag, 1971).

Although the method is pseudospectral, the spatial reso-
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lution of RMW corresponds to 32 x 32 x 32 grid points.
Viscosity and diffusivity must be relatively large in order
to prevent accumulation of variances at the highest
resolved wave numbers. The result is a very modest
microscale Reynolds number of R, = 27 at 1 = 0.

For given initial velocity field, three cases with increas-
ing role of stratification are considered. These are given in
terms of a turbulent Froude number Fr = v’/ NL where u’
is the rms turbulent velocity and L is the integral length
scale. At = 0 the three cases are given as

Case 1

Fr = o
Case 2

Fr = 3.63
Case 3

Fr = 183

A main result as described by RMW is that after about
one buoyancy period (r, = 2w/N), cases 2 and 3 undergo
apparent transitions from strong, turbulent decay to a
more weakly decaying mix of internal waves and horizon-
tal vortical flow. This transition is seen in a number of
diagnostics:

1. The first is decay of total energy. The total pertur-
bation energy is defined as a sum of kinetic and potential
energies

TE = KE+ PE
KE = % i (105)
PE= -12& R-1p?

2 po

The overbar denotes average over the flow domain and R
is the specified ambient (constant) stratification. Initially
all energy is kinetic. With stratification, there is exchange
of KE and PE. During an early period, TE decays quite
similarly in each case. At later times, the more stratified
flows (cases 2 and 3) retain more TE. In part the larger
retained energy in stratified flows may be explained as an
inhibition of processes which would transfer energy to
smaller, dissipation scales. This inhibition may be seen in
the next two measures.

2. The second is velocity derivative skewness. The
skewness is defined by
S = @u/8x)/ (Qu/3x)¥?
(106)

i = 1,2, 3,no summation over i

and has a value §; = ~ 04 at 1 = 0 due to unstratified
turbulent evolution prior to ¢ = 0. Transition at about
t = 7, is characterized by abrupt inhibition of the vertical
skewness S3; with relatively no effect on horizontal
skewnesses S and S,.

3. A further diagnostic, related to velocity derivative
skewness, is the transfer of KE and of PE across the spec-
trum. (N.B: this measure does not take into account
exchange of KE and PE through vertical buoyancy flux.)
Experiments of RMW show that increasing stratification
markedly reduces the transfer rate of KE but that this
reduction is largely compensated by increased transfer of
PE.
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Fig. 20. Percentage of wave energy versus times for three—dimensional simulation of RMW. Curve A represents
case 1 (Fr = o0); curve B represents case 3 (Fr = 1.83), and curve C represents case 2 (Fr = 3.63) {from Riley

etal., 1981].

4. Total dissipation rates for KE and for PE were cal-
culated. After an initial adjustment period, RMW observe
that the ratio of dissipation rates (KE: PE) tends to about
a value of 2.

5. One of the expected effects of stratification is
increasing anisotropy. RMW observe this anisotropy in
the growth of longitudinal microscale x; where

u? = ul/ @u [ 9x)? no summation over i

(107)

Growth of the u; is characteristic of decaying, unstratified
turbulence. When stratification is present, horizontal
components of u; grow much as in the unstratified case,
however, growth of the vertical component 41 is inhibited.

6. A final diagnostic considered by RMW is designed
to separate the motion field into a part due to ‘‘waves”
and a part due to ‘“vortices.”” The distinction is based
upon consideration of the spatial Fourier expansion
coefficients uy of the velocity field u (x) at any time. _By
incompressibility, k - u, = 0, uy lies in a plane normal to
k. The horizontal component in that plane is denoted
ux v. The orthogonal component in that plane is denoted
ug,w. The subscripts ¥ and W refer to “‘vortex’” and
“‘wave’’ since for the linearized equation of motion, the
uy w set describes internal wave propagation while the
uy,» set describes a field of vertical vorticity. (This dis-

tinction is appropriate for a case such as RMW which
omits mean rotation; the more general decomposition has
been described in section 2 above.)

Figure 20 shows the fraction of wave energy as a func-
tion of time for the three cases considered by RMW.
Because RMW start their integration with no fluctuation
potential energy and an isotropic velocity field, total
energy is initially approximately equally divided between
“‘waves’’ and ‘‘vortices.” For the stratified cases 2 and 3
in Figure 20 the fraction of wave energy tends toward the
equipartition value 2/3 but does not quite reach it. How-
ever, RMW do not calculate whether this deviation is due
to the conversion of wave energy to vortical energy or due -
to the more rapid energy loss of wave energy by transfer
to dissipation scales.

Two-Dimensional Case

Whereas the cost of computation has limited direct
numerical simulation in three dimensions, extensive simu-
lations in two dimensions have been performed. A
natural question remains: to what extent, or in what
regimes of parameters or of wave numbers, may
two—dimensional simulation resemble three—dimensional
flow interaction? It may be that subsequent detailed com-
parisons of two— and three—dimensional simulations will
resolve this question. One may speculate that in three
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dimensions, wave breakdown and dissipation at small
scales will proceed more efficiently than in two dimen-
sions. This view is supported by the known tendency in
two—dimensional turbulence to block energy transfer to
large wave number [ Fjdrtoft, 1953; Kraichnan, 1967,
Batchelor, 1969] and also from observed effects of
three—dimensional perturbations in the destabilization of
two—dimensional rolls in mixing layers. On the other
hand, for all scales of motion, the cross product of pres-
sure and density gradient provides source/sink terms for
vorticity, thereby enabling energy transfer to smaller
scales.

While the question of relating two—dimensional simula-
tions to three—dimensional flows remains open, the utility
of two—dimensional simulation for testing theoretical
hypotheses is clear. All of the physics of weak—wave and
strong—wave interaction, .and of wave number local and
nonlocal interaction, are retained. A variety of mechan-
isms for forcing and for dissipation can be explored and
the ways that wave-wave interaction (weak, strong or
““breaking’) achieve an equilibrium spectrum with given
forcing and dissipation can be examined in detail.

All two—dimensional simulations integrate the Bous-
sinesq equations of motion for flows which are nonrotating
and uniformly stratified in the mean and restricted to
motion only in a vertical plane. The coupled
non—dimensionalized equations for density and for hor-
izontal vorticity then take the form

0L —JW,L) = 8.p+V - VL)  (108qa)
9p—JW,p) = —&Y+ V- -&Vp) (108b)

Here { = V%) is the vorticity, y is the stream function in
the sense u = 9,¢, w = — 9,y p is the excess of density
above a linear mean density gradient,
non—dimensionalized such that the linear gradient is of
unit slope, and v and « are eddy viscosity and diffusivity
coefficients. We note that effects of rotation can be
included by adding a term fd,v on the right side of
(108a) and a third equation

dv—=J@,v) = —fay+V-eVy) (109

where v is the component of velocity normal to the verti-
cal plane and f is the Coriolis parameter scaled by buoy-
ancy frequency.

The most extensive two—dimensional simulations pub-
lished to date are those reported by Orlanski and Cerasoli
[1980, 1981], hereafter OC. Later we will discuss also
simulations by Weissman, et al. [1981], hereafter WMR,
Frederiksen and Bell (1983, 1984], hereafter FB, and Shen
and Holloway [1986], hereafter SH. OC specify the eddy
diffusivities in the following phenomenological way:

v =Kk = v 9.p <0

(110)

V=K=VL+VNL|M'V3 6,p>0
vt
This specification was proposed by Orlanski and Ross
[1973] and is intended to model the enhanced dissipation
when overturning 3,p > 0) occurs.
Boundary conditions for OC were taken to be rigid,
free—slip and adiabatic on the horizontal and vertical sides
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of a closed box. In some cases the upper lid boundary was
modified to simulate forcing by undulating plates
corresponding to a laboratory device. In other cases, the
flow field was excited by random body forces applied to
the vorticity and density fields. Computations were based
upon a finite difference scheme employing 51 grid points
in the horizontal by 61 in the vertical.

OC attempted to address a question whether
‘‘wave—wave interaction’’ or ‘‘wave breaking’’ limits wave
amplitudes. At low amplitudes, as evidenced by the rela-
tive absence of overturning regions, OC do not obtain a
‘“‘universal” spectrum. At higher amplitudes, interactions
fill out the spectrum and ‘“‘breaking’’ dominates as given
by the explicit role of (110), and OC claim that a degree
of saturation is obtained. However, the quantitative basis
for this claim is not clear.

On a point of theoretical interest, OC remark that the
interaction time scale seems to vary as E-V2, where E is
total wave energy. Although OC do not give explicitly the
basis of their interaction time scale, we might assume that
this quantity should approximate v, !, cf. (35). From (35)
one sees that »,! «E1, for a given spectral shape. If
comparison of the two time scales is appropriate, then the
weakness assumptions in (35) are violated at the energy
levels investigated by OC. Whether an E-! dependence
could be recovered at small E is not examined. )

To obtain a clearer picture of wave interactions, OC
compare the evolution of an isolated triad of waves with
the evolution of the triad when embedded in a
many—wave background. The presence of a background is
shown to cause departures from the evolution of an iso-
lated triad. This can be seen in Figure 21 which shows
“‘energy triangle diagrams.” In these diagrams total
energy is decomposed into three parts: the energy in
some wave, say wave 1, energy in another wave, say wave
3, and then the remaining energy. In an initially quiescent
background, trajectories on the triangle diagrams make
long, looping, quasi—-periodic passages. A preexisting
background of internal waves quickly breaks up the trajec-
tories, and leads to a more chaotic motion over a more
limited region.

OC test the response of a developed wave field to per-
turbations in two sets of experiments. In one set, a nar-
row energy spike is put into the spectrum at various wave
numbers. In the other set, random energy forcing is
applied in selected wave number bands. The two sets of
experiments produce similar results and so here we
describe only the latter, or ‘‘band-—random,” set. Three
bands were forced corresponding to low, intermediate and
high wave numbers. Forcing was isotropic and applied
equally to the density and vorticity fields. The nature of
time dependence of forcing is not specified by OC. When
forcing is applied in low wave numbers, energy levels are
observed to rise and oscillate for a while. Oscillations later

“cease and energy levels decrease. OC interpret the oscilla-

tory behavior as evidence of wave—wave interaction, with
subsequent cessation and decrease of energy as resulting
from wave breaking. Forcing over intermediate wave
numbers yields only a temporary increase of energy which
OC suggest is due to nearness to wave breaking. Forcing
in the high—wave number band is lost immediately to dis-
sipation. An interesting aside is that OC note an apparent
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Fig. 21. Energy triangle diagram showing the evolution of a

wave triad for two cases. Total energy is decomposed into three
parts: the energy £, in wave 1, the energy £3 in wave 3, and the
remaining energy £ — E; — E;. In the first experiment (N;) the
wave triad has an initial energy density of 8 cm? s~2 and is put
into a quiescent background. The second experiment Ny starts
with the samé triad components, but in the presence of a random
internal wave background with a mean energy density of
2 cm? s~2 [from Orlanski and Cerasoli, 1980].

steepening of wave number spectra during periods of
intense breaking.

To further analyze the energetics, OC separate the net
energy change at each wave number into a part due to
nonlinear transfer and a part due directly to the dissipation
operator (110). For each of the band—forced experiments
it is observed that nonlinear transfer tends to dominate
over dissipation. However, because of strong time depen-
dence of both transfer and dissipation, there is some
difficulty in obtaining reliable averages. An interesting
claim occurs to the effect that wave—wave interactions
lead to energy transfers that are local in wave number
whereas the stronger (breaking) interactions permit nonlo-
cal transfer of energy that need not pass through inter-
mediate wave numbers. Another suggestion of OC is that
energy dissipation may be proportional to the excess of
energy over some ‘‘universal” level.
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Three further studies using the two~dimensional (verti-
cal plane) idealization are WMR, FB, and SH. These stu-
dies differ from OC in a couple of significant ways. The
method is pseudospectral as discussed previously with
respect to RMW. Compared with a finite difference
scheme in OC, the pseudospectral method provides greater
accuracy, e.g., linearized waves propagate on the correct
dispersion relation, not suffering numerical dispersion.
The equations of motion are (108). However, neither
WMR, FB nor SH  -employ a nonlinear,
stability—-dependent dissipation such as (110). A further
important difference from OC arises in the statement of
boundary conditions. Whereas the OC model assumes
rigid, adiabatic sidewalls, WMR, FB, and SH empioy
periodicity conditions in the horizontal. (FB and SH also
employ periodicity in the vertical.) For these cases, pat-
terns of vertically sheared, horizontal and nearly horizon-
tal flow can occur. Also, waves of frequencies up to N are
readily supported. The WMR report is “‘preliminary” as
its authors remark. Here we review FB and SH.

Simulations performed by FB are designed largely for
the purpose of comparison with the theoretical develop-
ments by Carnevale and Frederiksen [1983, CFl discussed
in section 4. Spectral truncation for FB corresponds to
physical representation at 64 x 64 grid points. Four kinds
of experiments are performed: (1) inviscid evolution, (2)
viscous decay, (3) forced~dissipative equilibrium, and (4)
breakdown from a standing wave.

Inviscid cases are run from prescribed initial conditions
with no forcing and no dissipative mechanism present.
The equations of motion (108) with v = x = 0 then con-
serve total energy
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and cross—correlation

C=’§ Ckp_ks - (111b)

Y XSkE

s=%1 k

where
B =~ | 457  Ap = %lk“{k—spk] 112)

Here ¢, are Fourier expansion coefficients for vorticity, py
are coefficients for density, 4f are wave amplitude
coefficients, and Ef are wave mode energies. The index
s = £ 1 describes nominal left/right—going waves. Given
only the conserved quadratic quantities £ and C, a statist-
ical equilibrium or maximum entropy state

B - [a ~ st 113)

should be approached on ensemble average from almost
all initial conditions. Constants ¢ ‘and b in (113) depend
‘upon initial conditions through the initial, and conserved,
values of E and C.

A particular item of interest for FB is the linear vertical
wave momentum which FB define as

P= 3 Y kE /o

s=+1 k

(114)

where o = 5 k. k~!. For a continuous system in k space,
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Fig. 22.. Cross—spectrum Ry as a function of wave number k for
two different .runs of FB’s two—~dimensional simulation. The
spectra are averaged in time for about 8.4 s [from Fredericksen and
Bell, 1983].

CF identified P, as a conserved property under resonant
interactions that is not conserved under slightly
off—resonant interactions. It is in this sense that CF sug-
gest that resonant interaction theory is a ‘‘singular’ limit
for a vanishingly small amplitude. If P, were a conserved
property, then (113) would be modified to
Bt = [a— sbk — sok, / ki ' (115)

where ¢ is a constant dependent upon initial ,. Numeri-
cal experiments by FB confirm evolution toward (113)
rather than (115) while values of P, are observed to
wander over time.

A focal diagnostic quantity in FB is overall entropy
which is given by cf. Carnevale et al. [1981]

Y 3 InEf

s=+1 k

1
S = 3 (116)
CF’s theory demonstrates that S on ensemble average
increases monotonically toward a maximum value when
(113) is attained. Experiments by FB in which realization
values of Ef are used in (116) indeed show realization
entropy increasing, with fluctuations, in a way that is con-
sistent with CF. A further property of CF’s theory is that,
for a given energy level, higher—stratification N should
suppress the rate of increase of § without affecting the
asymptotic maximum of §. FB demonstrate also this pro-
perty.

FB make several observations based upon their viscous
decay experiments. Especially, they remark that kinetic
and potential energies remain approximately in equiparti-
tion as would be the case for wavelike fields in the

absence of rotation. This equipartition, with the
corresponding implication that
Ry = Real <A4f A5 > = 0 117

is important to the theory of CF for which (117) is

assumed. Condition (117) states that left— and
right—going waves are nearly uncorrelated and
corresponds to a nearly vanishing vertical buoyancy flux.
How well (117) is satisfied is difficult to say given the
statistical variability among realizations and the temporal
quasi—oscillatory fluctuations in any realization. More-
over, the degree to which (117) is satisfied must depend
upon the relative strength of nonlinearities. No simple
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measure of nonlinearity is given by FB. As a suitable
measure we may take the “‘characteristic inverse Richard-
son number”’ [Munk, 1981]

Ri- = ©Qu/8z)?
= S

where (Qu/3z)? is the variance of vertical shear averaged
over the flow domain. Roughly we might estimate Ri~!
for FB as follows:

The high—energy case for FB is reported as total energy
E = 102m?s? and buoyancy frequency N = 0.757s°2,
Supposing E to be roughly equipartitioned between KE
and PE, and assuming that velocity variance is more in the
horizontal than the vertical component, we take an upper
bound on horizontal velocity variance u? as 10-2m? s~2.
An estimate of (Gu/8z)? requires assigning a representa-
tive vertical wave number. For the ‘‘reddish’’ spectra of
FB, truncated at wave number 30, it may be reasonable to
guess that a waveé number k; such that @u/8z)? = kfu?is
not larger than k;= 4. Thus it would appear that FB
explore values of Ri~! up to a value of 0.3 perhaps. This
number will be important in the comparison of FB with
SH, the latter to be described shortly.

The third category of experiments by FB are
forced—dissipative cases which are run out to a condition
of approximate statistical stationarity. Forcing is of white
noise random type, applied isotropically over wave
numbers such that k2< = 36 and such that kinetic and
potential energies are supplied equally. The amplitude of
forcing was adjusted to achieve cases with different
degtees of nonlinearity. The strongest cases may have
obtained Ri~! values up to about 0.3 as estimated previ-
ously. ,

Forced—dissipative experiments confirm earlier FB
results from viscous decay experiments. Especially, the
flows seem to remain close to an equipartition of kinetic
and potential energy with the corresponding implication
that the vertical buoyancy flux nearly vanishes. There
may be some room for doubt on this point. Figure 22,
from FB, shows the cross—spectrum R, which likewise
would vanish with the buoyancy flux. It would appear that
Ry ! = 0 tends to occur in low wave numbers. However,
FB point out that there may be a good deal of realization
variability especially at low wave numbers. FB suggest
that, averaged over a suitably large ensemble, smaller R,
might result. Moreover, Ry ! = 0 seem to occur in low
wave numbers which are subject to forcing, with uncertain
consequences.

A further observation from forced—dissipative experi-
ments is that the ratio of horizontal to vertical kinetic
energy tends to increase over time. This occurs despite
the isotropic nature of the forcing and is thus a manifesta-
tion of nonlinear interaction tendencies.

__The fourth type of experiment by FB examines the
breakdown of energy from an initially standing wave. of
mode k, = 2, k5, = 1. Interesting observations are that
entropy as given by (116) and energy of the higher wave
number modes both tends to increase in an. oscillatory way
with a period equal to half the period of the standing
wave. FB observe that energy growth at higher wave
number tends to occur during the phase of the standing
wave when its potential energy is near a maximum. A

(118)
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mechanism for such phase—dependent, preferential energy
transfer is not apparent although FB remark that similar
oscillatory energy growth at half the standing wave period
is also characteristic of the generalized Mathieu equation
model for internal wave instability [Mied, 1976; Drazin,
1977; Klostermeyer, 1982).

We now turn to Shen and Holloway [1986] who also
employ spectral transform techniques to investigate the
circumstances that determine the amplitudes of equili-
brium spectra. Spectral fluxes and conversions of energy
are studied. Also, the average and fluctuations of fre-
quency of individual waves are examined.

Experiments of SH are performed at a resolution
corresponding to 64 x 64 points, with some
higher—resolution tests at 128 x 128 points. Initial condi-
tions consist of random phase assignment with spectral
energy levels given by

Ewk) = 450—6}%}[“%2]"[3% T e

or

2 - —
Elk k) = 450%9 {;f-,(mh k,z] ‘[pg+ ) '(1198)

The spectral shapes are intended to imitate the GM model
under constraints of the vertical plane idealization and
nonrotation. Singularities occur on the k., and k, axes
which are  arbitrarily resolved by  choosing
E,k) = E(1,k,) and E (k. ,0) = E(k.,1). The values 8
and A are scaling constants while E, specifies the average
total energy density.

Forcing and dissipation are then applied and integrations
are carried forward in time until a statistically stationary
regime is established. Given uncertainty in the actual
energetic forcing of internal waves, SH somewhat arbi-
trarily choose to force only the horizontal currents in the
three gravest modes k, = 0, k, = 1,2,3. For comparison,
another case is executed with isotropic forcing of both
density and velocity fields at low wave numbers such that
ki< = 9. By limiting forcing to gravest modes, most of
wave space is free to exhibit effects of energy cascades.
Two types of forcing are explored. A phase coherent,
nonlinear force F, = A™W,/ k? V] ? is applied where ¥,
is the stream function coefficient in the forced mode.
Also a random force governed by F, + AF, = A’R, where
R is the realization of a complex Gaussian process, is
applied. The choice of the two forcings was intended as a
sensitivity test and results were observed to be fairly
independent of the nature of the forcing. Dissipation in
SH is given by a linear differential operator V4, sometimes
called a ‘‘hyperdiffusion,’” applied to the vorticity and den-
sity fields. As compared with a more customary V2
diffusion (cf. FB), the V* operator removes variance at
higher wave numbers, again leaving more of wave space
free to exhibit effects of nonlinear interaction.

By adjustment of forcing and dissipation, SH set up four
very different cases to study. Characterizing the degree of
nonlinearity by Ri~! {cf. (118)), the four cases are

Case 1:
Ri !l = 0.01
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Case 2:

Rirl=0.1
Case 3:

Rirl=1
Case 4:

Rirl=17

Snapshots of typical fields in these four cases are shown
in Figure 23. The relation of the different cases to oceanic
conditions depends upon a question of resolution. A typi-
cal value of Ri~! in the ocean depends upon the observed
scales of motion which contribute to Qu / 8z)2. If only
large scales are observed, say of the order of tens of
meters to 100 m, results such as cases 2 or 1 may be
obtained. With resolution down to a meter, a situation
like case 3 may be obtained. At still finer resolution, and
in a turbulent ‘“‘patch,” a picture such as case 4 might be
seen although the two—dimensional idealization would
then be quite suspect.

A popular conjecture [cf. Munk, 1981], is that internal
wave amplitudes may be limited by wave overturning as
Ri~! approaches unity. Figure 23 shows that, indeed,
overturning becomes manifest near Ri™! == 1. Moreover,
the extent of forcing and dissipation required to maintain
stationarity increases only slightly between cases 1 and 2,
whereas very much stronger forcing is required to main-
tain case 3 with even stronger forcing in case 4. The total
dissipation rates for the four cases from SH, as well as
some additional cases, are graphed against Ri~! in Fig-
ure 24. At least qualitatively, the simulations appear to
support a ‘‘saturation by breaking’’ hypothesis. Quantita-
tive interpretation of Figure 24 is hazardous, however, on
account of the two—dimensional idealization.

A point denoted case 5 in Figure 24 is noteworthy
insofar as this case is run at the higher 128 x 128 resolu-
tion and seems to suggest increased dissipation with
increased resolution for given Ri~!. In case 5, Ri~! ranges
over values from about 1.5 to 1.6 which are expected to
yield frequent overturning. Such overturning and the
time—evolving, complicated morphology of flow features
in case § are shown in Figure 25.

Wave number spectra in k., k, and in total k of kinetic
energy and of available potential energy (density variance)
are shown in Figure 26 for the four cases of SH. At
smaller Ri~! (cases 1 and 2), KE and PE stay in approxi-
mate equipartition except at low wave numbers where
direct forcing of horizontal kinetic energy is applied.
These results are consistent with experiments by FB which
appear to be also in the Ri~! range of cases 1 and 2. At
larger Ri~!, in cases 3 and 4, equipartition breaks down

_and KE and PE spectra become dissimilar. Slopes of both

KE and PE spectra in small Ri™! cases fall off roughly as
k73 in either k, or k,. At larger Ri™!, slopes of KE spec-
tra steepen nearer to k>3 while slopes of PE spectra shal-
low to less than k72 in case 4. The behavior at large Ri™!
reflects a tendency toward two—dimensional turbulence:
near conservation of vorticity inhibits KE cascade to large
wave numbers, steepening the KE spectra, while density
increasingly acts as a passive scalar with a shallower vari-
ance spectrum. Another consequence, which is also an
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Fig. 23. Instantaneous fields of stream function, vorticity, density, and vertical profiles of horizontally averaged
density, for the four cases of SH [from Shen and Holloway, 1986).

apparent artifact of two dimensions, is that the rate of dis-
sipation of PE tends to exceed the rate for KE by a factor
of about 2 at larger Ri~L.

SH further studied the conversion of kinetic to potential
energy and the energy transfer across the spectrum.
Results for case 3 are shown in Figure 27. All quantities

have been time—averaged over several buoyancy periods.

The energy redistribution is here decomposed into three
parts:

1. KE transfer is the rate at which KE increases or
decreases at any wave vector k due to nonlinear transfer
of KE to or from other regions of the spectrum. Summed
over the spectrum, the transfer vanishes; this is a pure
redistribution with no overall gain or loss of KE.

2. PE transfer is the rate of PE increase or decrease at

any k due to transfer and is a pure redistribution with no
overall gain or loss of PE.

3. Finally there is KE—PE conversion. In a stratified
fluid under gravity, KE and PE may be exchanged by
means of vertical mass flux pw. Upward fluxpw > Oisa
sink for KE and corresponding source for PE.

‘As seen in Figure 27, KE transfer exhibits a pattern of
KE loss at intermediate scales with compensating gains at
large and small scales. This pattern is characteristic for
two—dimensional flows in which KE transfer alone con-
serves both overall KE and overall vorticity variance.
Although vorticity at each fluid element may change on
account of gravitational torques, KE transfer is nonethe-
less constrained [ Fidrtoft, 1953; Kraichnan, 1967].

PE transfer is somewhat simpler since no secondary
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Fig. 24. Dissipation rate of total energy, divided by the
coefficient of the dissipation operator graphed against Ri~!. The
viewer is strongly cautioned from quantitative interpretation of
this figure on account of the two—dimensional idealization under-
lying the computation (from Holloway, 1984].

conservation constraints occur as in the case of KE. PE is
removed at low wave numbers and supplied to higher
wave numbers by the physical process of shearing and
deforming larger—scale density features into smaller—scale
features.

When we come to KE - PE conversion, the results may
seem surprising. One expects that the vertical buoyancy
flux is a consequence of manifest overturning: thus, on
the scale of manifest overturning, one may expect upward
mass flux or KE — PE. Instead, from Figure 27 we see
that the very longest resolved scales are sustaining upward
mass flux whereas over most of the rest of wave space
(including any scale of manifest overturning) there is
downward flux or reconversion PE — KE. Results here
shown for case 3 are near Ri'! = 1. However, even at
very much smaller Ri~!, SH find qualitatively similar pat-
terns of KE — PE conversion although at much reduced,
time—averaged values. It would seem that nonzero pw
can be sustained by nonlinear interaction even in the com-
plete absence of manifest overturning.

We return to the behavior noted by FB in the decay of a
large—scale standing wave. Transfer of energy to smaller
scales was seen to occur preferentially when the standing
wave was in its potential energy phase; hence the transfer

was quasi—periodic with a period of about half the stand-

ing wave period. Such behavior may simply be a conse-
quence of two—dimensionality. Kinetic energy cannot be
transferred directly from large to small scales whereas
potential energy can be so transferred, as seen also in Fig-
ure 27. Importantly, systematic draining of potential
rather than kinetic energy from large scales is consistent
with, and under some circumstances must demand, KE to
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PE conversion via pw > 0 at large scales even for rather
small Ri"!'. An overall energy balance sketched in Fig-
ure 28 may be very particular to the two—dimensional
idealization.

Finally, numerical simulations may be used directly to
test the assumptions underlying resonant interaction
theory. For example, resonant interaction assumes that
the motion field consists of waves propagating at their
natural frequencies. Stronger interactions are presumed to
“smear” individual waves over a range of frequencies
and, possibly, to induce mean frequency shifts. Defining
instantaneous ‘‘frequency’’ as the rate of change of com-
plex phase, SH calculate the standard deviation o,. They
find that o, varies proportionally to k Ri~ *, suggestive of
a “random Doppler shifting” [Holloway, 1979].

7. CONCLUSIONS

Nonlinear interactions among internal gravity waves
provide an important link between the large generation
and the small dissipation scales. Their proper understand-
ing and modeling is hence paramount for a variety of
important scientific and practical problems.

Here we summarize the main points of the review, sug-
gest directions for immediate future work, and try to put
the results in some broader perspective.

Summary

The main points of the review are as follows:

1. Studies of the nonlinear interactions have excluded
the interaction with the vortical (i.e., potential vorticity
carrying) mode of motion. This is true for all studies but
that of Riley et al. [1981], which is a pioneering study in
this respect. Lagrangian studies exclude the vortical mode
when making an expansion about an equilibrium state and
assuming solutions proportional to exp {—iwt). Numerical
models exclude the vortical mode when confining them-
selves to motions in a nonrotating vertical plane. In the
ocean, it is unclear how much of the observed fluctuations
are due to the vortical mode of motion. This is especially
true for the small scales that contain most of the shear.

2. The resonant interaction calculations have provided
most of the conventional wisdom about the role of non-
linear interactions. A large and impressive amount of
work (about 20 man—years) has been spent to evaluate
the transfer integral (32) for various model spectra. These
calculations resulted in the following scenario. The pri-
mary effect of resonant interactions is to make the spec-
trum vertically symmetric at high—wave numbers (by the
elastic scattering mechanism), and smooth at high—wave
numbers and high frequencies (by the fast induced
diffusion mechanism), and to create an inertial peak (by
the parametric subharmonic instability mechanism). The
Garrett and Munk model spectra are symmetric and

“smooth and have an inertial peak. The secondary effect is

to adjust the spectrum to deliver a constant downscale flux
under the ID and PSI mechanism. For the GM76 spec-
trum the downscale flux is of the order of 103 W m2,
This rate is roughly compatible with other estimates of the
energy flux through the internal wave spectrum.

3. The range of validity of the resonant interaction
approximation is not known. The resonant approximation
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Fig. 25. Fields of stream function, vorticity, and density at successive times. Time is scaled by the mean buoyancy
frequency. Positive stream function is contoured in solid lines; negative stream function dashed. Sense of flow is
here defined such as to keep more positive stream function to the left [from Holloway, 1984].

can be regarded as the first order of a perturbation expan-
sion. There is, however, no simple expansion parameter.
The derivation requires a number of assumptions. Their
appropriateness for the oceanic internal wave field is either
difficult or impossible to check.

A simplified criterion often cited states that the resonant
interaction approximation is not valid if the interaction
time is smaller than the wave period. This is not neces-
sarily an adequate criterion. The ratio of interaction time
to wave period measures the broadening of the resonance
surfaces (i.e., how well waves are described by the linear
dispersion relation). The resonant interaction approxima-
tion is valid if this broadening is inconsequential, i.e., if
the nonlinear interactions are ‘‘coherent’ within this
broadened volume of phase space. A simplified quantita-
tive formulation of this latter criterion has not been given
yet for the oceanic internal wave field and might not even
exist.

There does not exist a deductively well-established
theory for finite amplitude or strong interactions among
internal waves. If such a theory were available and con-
tained the resonant approximation as a limit, the range of
validity of the resonant approximation could systematically
be examined. Analysis of the direct interaction approxi-
mation in two dimensions suggests that the resonant
interaction approximation might perhaps be a ‘“‘singular”
limit of finite amplitude theory, since resonant interactions
conserve the linear vertical wave momentum that, in gen-
eral, is not conserved.

4. The validity of the resonant approximation must be
seriously doubted in the induced diffusion region. The
resonant calculations suggest that high—frequency,
high—wave number internal waves interact primarily with
large—scale near—inertial currents. The waves are weakly
and randomly refracted by the near—inertial shear and per-
form a random walk in vertical wave number space which



530 MAULLER £7 AL.. NONLINEAR INTERACTIONS AMONG INTERNAL GRAVITY WAVES
100 i 100 T
16’ = :.11 6L ]
S <2 a2l
" 10 r -3 1 10 !— \ 7
8 - 3
s w0l BLNE - .
»t
w 16'{‘ 116‘r =
-8 -1 =%
1
% Tta) case 1 47T 1
168 . 10° !
10° T T T
” ——KINETIC
07T I 3 N POTENTIAL r
e r b .
= 16°F s - o
2 I T
20T 1T 1T .
BTN o 1T 1r ]
. [ 1
O (b case 2 1F 1 i
16°¢ L !
10° T T 1
o'E. \ 1 1F 1
-2 - _.". -"-.:.. '''''' '
5 T : 7 17T \ .
[} -3
x 10 "i ~1 o 1
Rl
' = 1 F =
-5 - -
10 r_(c) CASE 3 ] 3
' 5‘ ] 1
T
——KINETIC
B —----POTENTIAL }
- r\ - -1
= 1r ’ i
wh
1 F -1 =
1 r 7 N
|
2 0 1 2 0 1 2

Fig. 26.
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can be described as a diffusion of wave action. The more
general eikonal calculations, which assume a scale separa-
tion between the waves and the refractive background but
no weak interaction, show a completely different picture:
The high—frequency, high—wave number waves undergo
large and systematic excursions in vertical wave number
space and encounter critical levels. Nonlinearities in the
refraction equation are essential for these large excursions.
Furthermore, corrections to the weak interaction, induced
diffusion case can be calculated for a Garrett and Munk
spectrum and turn out to be large. Resonant interaction
theory hence does not seem to be applicable to
high—frequency, high—wave number internal waves.

K; Kl

Wave number spectra in total k, &, and k, of kinetic and potential energy for the four cases of SH [from

5. Strong interaction theories and direct numerical
modeling are not yet in a stage to be directly applicable to
oceanic internal wave fields. Strong interaction theories
are technically and computationally so complex that it is
extremely difficult to apply them to interactions within a
realistic oceanic internal wave field. Their main merit so
far has been the unveiling of general theoretical concepts.
Similarly, direct numerical modeling is severely limited by

finite computer resolution. So far only three
low—resolution, two—dimensional models have been
integrated to  statistical  equilibrium. For one

three—dimensional model the initial tendencies have been
explored. These models have been used for gaining prin-
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cipal insights and for theory testing but not for direct com-
parison with the ocean.

Future Work

A substantiation of the nonlinear interaction results and
further insight into their role are expected to come from
research in the following areas:

Rationalization of the results of the nonlinear interaction
calculations within the complete energy balance of internal
waves. The nonlinear interaction calculations suggest that
internal wave energy is generated at low wave numbers
and high frequencies and dissipated at high—wave
numbers and inertial frequencies. Does this conform with
our limited knowledge of the energy sources and sinks of
internal waves? Are there apparent inconsistencies?

Validation of the resonant and eikonal approximations.

Both the resonant and eikonal approximations are based
on assumptions. The resonant approximation assumes
that the nonlinear interactions are weak and hence
confined to resonant interactions. The eikonal approxima-
tion assumes that the nonlinear interactions are dominated
by scale—separated interactions and that the large—scale
background flow is not affected by the interaction. We
need to understand if and where these approximations are
adequate. )

Modeling the transport of small—scale internal waves by
eikonal techniques.. Integration of the eikonal equations
provides an efficient and versatile approach to study the
interaction between small-scale and large—scale internal
waves. Unlike the resonant interaction approach, which
has been extensively studied over the past 10 years, the
eikonal approach has just recently been applied to the
internal wave problem and still holds promise of new
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Fig. 28. Sketch depicting the energy balance on two planes, one
representing kinetic energy, the other representing potential
energy. External forcing of KE and, sometimes, of PE applies at
low wave numbers. KE is converted to PE at low wave numbers
by pw > 0. Then PE is scattered to higher wave numbers where
some is reconverted to KE by pw < 0. KE is then distributed to
both low and high wave numbers [from Holloway, 1984].

insights. The principal limitations of the eikonal approach
are its built—in assumptions. Additionally, the integration
of the eikonal equations does not constitute a transport
theory. One still has to average over an ensemble of
waves or background flows in order to determine the tran-
sports through the spectrum. At present, this ensemble
average is determined by Monte Carlo simulations.

Direct  numerical  modeling of internal wave
interactions. Direct numerical modeling is another
promising approach -to study internal wave interactions.
Direct numerical modeling has a number of appealing
advantages. It is not restricted to weak or scale—separated
interactions. It can easily include the interaction with the
vortical mode, and it also yields space—time results (as
opposed to spectral results) that are directly comparable to
oceanic measurements. The main limitation is the com-
puter resolution. Even with optimistic estimates of the
increase in computer power we are more than a few years
away from a full three—dimensional simulation at oceanic
Reynolds and Peclet numbers.

Perspective

The nonlinear interaction studies reviewed in this paper
bear on some broader oceanographic issues.

Universality of observed internal wave field Observed
internal wave spectra from many different locations and
times show a remarkable agreement with the ‘‘universal”
GM spectrum, although significant deviations with definite
patterns have been seen in recent years. The resonant
interaction calculations suggest that the GM spectrum is
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close to a steady state with respect to nonlinear interac-
tions over a wide range of wave numbers and frequencies
and that deviations rapidly relax. The spectrum also sup-
ports a downscale energy flux from large to small scales. If
this is true, nonlinear interactions are a prime candidate
for explaining the universality of the spectrum. The exact
mechanism by which the universal spectrum is maintained
is, however, not clear. Munk [1981] suggests a saturation
mechanism due to wave breaking by shear instability. He
assumes that the energy flux through the spectrum is a
sensitive function of the Richardson number or rms shear.
The shear depends on the energy E of the wave field and
the high—wave number cutoff 8.. A slight increase in
energy leads to a large increase in energy flux. A large
energy input into the wave field can therefore be
transferred to dissipation scales by only a slight change in
energy level, assuming B. to be constant. Another expla-
nation [Garrett and Munk 1979, McComas and Miiller,
19814] is based on the apparent long dissipation time
scale, of the order of 50 to 100 days in the main thermo-
cline. In 100 days the large—scale, energy—containing
waves travel of the order of 1000 km. This long dissipa-
tion time and large propagation distance can account for a
relatively constant energy .level, as energy inputs at
different times and locations are smoothed out or spread
out over these scales. ¢

Overall energy and enstrophy cascade. Oceanographers
generally presume that there exists an overall energy and
enstrophy cascade from the large planetary scales where
velocity, density, and potential vorticity variances are gen-
erated to the microscales where these variances are dissi-
pated. The resonant interaction calculations predict an
energy flux from large— to small-scale internal waves.
This result supports the concept of an overall energy cas-
cade and makes the internal wave field an important link
in that cascade. It is, however, unclear how enstrophy
(the variance of potential vorticity) is cascaded to the dis-
sipation scales and what the role of the internal wave field
would be in such an enstrophy cascade. Recall that inter-
nal waves do not carry potential vorticity.

Internal wave—induced mixing. It is often assumed that
the energy cascade through the internal wave spectrum
provides the major energy source for small—scale tur-
bulence and that a certain fraction of this energy is used
for mixing. If this is true, the vertical (cross—isopycnal)
mixing coefficient can be estimated and parameterized in
terms of the energy flux Qg across the internal wave spec-
trum, without knowing the details of the overturning,
breaking and subsequent mixing events. McComas and
Miiller’s, [1981b] estimate of the energy flux.leads to a
mixing coefficient K, ~ 10°m2%~!, as a function of the
energy £ and bandwidth 8. of the internal wave field.
Insofar as their energy flux is determined by the
low—wave number, energy—containing region of the spec-

“trum, where the resonant approximation seems to be

valid, their estimate of K, might turn out to be fairly
robust to corrections of the interaction rates at high—wave
numbers. Indeed, we seem to have achieved a
zeroth—order understanding [Garretr, 1984] where the
dynamic estimates of K, from the energy flux Qg agree in
order of magnitude with kinematic estimates based on the
statistics of the frequency and thickness of mixing events
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and direct estimates from microstructure measurements.
However, important issues such as the depth dependence
of K, and the importance of the various terms in the tur-
bulent kinetic energy budget still need to be resolved.

A zeroth—order understanding has only been reached
for mixing in the ocean interior. There is the possibility
that a large fraction of the cross—isopycnal mixing is done
in the boundary layers of the ocean. Internal waves might
also provide the energy source for such mixing in boun-
dary layers. Internal waves being reflected off a sloping
bottom show a huge energy flux imbalance that can be
tapped for mixing [Eriksen, 1985]. How much of that
imbalance is actually used for mixing depends on non-
linear relaxation effects and has not been estimated yet.

Effect on large—scale motions. For large—scale and meso
scale motions, internal waves are subgrid motions. Diver-
gences or convergences of the internal wave momentum
and mass flux appear in the equations for the larger—scale
motions and effect their evolution. There is a clear need
to understand these effects and parameterize them,
perhaps by internal wave—induced diffusion coefficients.
Observational estimates are scarce;, the theoretical esti-
mates of Miiller [1976] are inaccurate since he did not
account for the special wave number structure of the oce-
anic internal wave field. We are clearly far away from
even a zeroth—order understanding of these effects. As
outlined in this review, further understanding of the non-
linear interactions among internal gravity waves might
contribute to the solution of some of these broader
oceanographic problems.

NOTATION

a wave amplitude.
A action density.
AK) action density spectrum.
b depth scale of Brunt Viisild frequency.
Dy diffusion tensor.

energy density.
Ek) - energy density spectrum.
f Coriolis frequency.
J mode number.
Je mode number bandwidth.

k= (kxakyskz)
kh = (kx,ky)

wave number vector.
horizontal wave number vector.

Ky vertical mixing coefficient.
N Brunt Vdisald frequency.
D pressure.

| 4 wave momentum.

Qu action flux.

Qs energy flux.

Ri Richardson number.

S shear.

S&) shear content spectrum.
s==1 index.

t time.

= transfer function.

u= (u,v,w) current velocity.

x = (x,y,z) position vector.

a wave amplitude.

B. vertical cutoff wave number,

B

vertical wave number bandwidth.
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coupling coefficient.
dissipation rate.
vorticity.

diffusivity coefficient.
relaxation rate.
viscosity coefficient.
relaxation rate.
Boltzmann rate.
vertical displacement.
potential vorticity.
density.

constant reference density.
background density.
intrinsic frequency.
dissipation time scale.
correlation time.
stream function.
frequency.

frequency.
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