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  In earlier work we have generalized from 2D to 3D systems a method described by Christiansen and Taylor for inferring all profiles in an MHD equilibrium, given only knowledge of the shapes of the flux surfaces. We are implementing a code to practically apply this earlier formal result. Here, we describe the current status of the code.
Using  the properties of the Grad-Shafranov (GS) equation, Christiansen and Taylor (CT) have shown[1] that complete MHD equilibria may be obtained for axisymmetric  tokamaks with  noncircular cross-sections, provided that one initially knows only the shapes of the flux surfaces.  Starting from a 3D generalization of the GS equation[2],  we have recently demonstrated[3]  that this remarkable result can be extended to 3D systems like stellarators. A code (profile_invert) to practically apply our earlier formal result is now nearing completion. Once fully operational, the code could be used with spectroscopic data to infer a wealth of information about the profiles in stellarator experiments. In this paper, we describe the current status of the code.
Theory

We briefly recapitulate the results of Ref.[3]. Assume we are given toroidal MHD equilibria

(p = JxB, (0J = (xB







(1)

with good flux surfaces, described by flux-surface label ((x), hence 

B( ( ((.B = 0, J( ( ((.J = 0 .





(2)

We parametrize real-space position by flux coordinates {qi}({(,(,(} (i=1-3). For a starting “reference” system we take (=(g, the geometric toroidal angle. For 2D (axisymmetric) systems, one uses the “mixed” representations

B = ((xb+bF, (0J = -b(*(+(Fxb





(3)

(with b2(*(((.(b2((), b(((g=
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/ R, so b2= R-2) to obtain the GS equation:

b2(*( = -(0p’/(’- b2FF’/(’.





(4)

Here, p’( dp/d(. For 3D systems, it is shown in [2] that a mixed representation may again be given, making use of 2 special coordinate systems, the “natural” & “conatural” systems {(,(n,(n} & {(,(c,(c}, satisfying the similar determining equations

(.[((x(((nx(()]=0, (.[((x(((nx(()]=0,      




(5) (.[((x(((cx(()/|((|2]=0,(.[((x(((cx(()/|((|2]=0

Then the generalized mixed representation is given by:

B = ((xbc+bnF, (0J = (x(((xbc)+(Fxbn+F(xbn,
           


(6)

where bn,c(en,c/(en3.ec3), and en,c((x/((n,c is the contravariant basis vector for (n,c. This yields the 3D-GS equation[2]:

   bc2(c*( = -(0p’/(’- bn2FF’/(’+Fbc.(xbn-F’bc.bnx(( 

-(F/(’|((|2)(bnx(().(x(bcx(() + (F2/(’|((|2)(bnx(().((xbn), 
(7)

with bc2(c*( (-bc.(x(((xbc) =(.(bc2(()-((.bcx((xbc).

Following CT, we write (’x(7) as a product of some combination of the profile functions 

{p’,(’,F}(() times coefficients {A,C,Di=1-5}(x) which vary over a flux surface:
(((((A+((2C = -D1(0p( -D2FF( -D3F2 –D4(F(()(-D5(F((), 


(8) 

where  A( |((|2, C( bc2(c*(,  D1(1, D2(bn2 ,



(9)

D3 (-(bnx(().((xbn)/|((|2, D4(bc.(bnx((),  D5(-bc.((xbn)+(bnx(().(x(bcx(()/|((|2 .  


These coefficients are even under stellarator symmetry {(,(} ( -{(,(}. Only A,C, D1, and D2 are ≠0 in the 2D case. Our goal is to solve Eq.(8) for the profiles {p’,((,F}. For this, we must 

(a)compute the natural & conatural coordinates, to evaluate the coefficients {A,C,Di} in (8), and 

(b)solve (8) as a system of o.d.e’s in (, and from this compute the profiles {p(;( ,’;J,F} of gradients in pressure, poloidal and toroidal flux, and of toroidal and poloidal currents.

These steps have been implemented in computer code Profile_Invert. It accepts as input a Fourier representation of flux surfaces corresponding to a 3D stellarator equilibrium. The flux surface shapes could be provided experimentally by, for example, soft X-ray tomographic data.  Currently, the code is being tested using descriptions of ((x) from analytic models, and from VMEC equilibria.

Calculating the natural & conatural coordinates

Following Ref.[2], the natural coordinates (n,(n  are related to reference cylindrical coordinates through transformation functions    and . Writing (n = ( +   (n = ( +  ,   and  are solutions of

L{-(/(( 33 + (/( 23, (/(( 23 - (/( 22with

 L{((/(( 33 (/(( -(/(( 23 (/( -(/( 23 (/(( +(/( 22 (/(and ij = gij/(g. The ij are determined from the given plasma shape. The equation is solved by calling a MUDPACK library routine.

Having found the transformation to natural coordinates, inductances (ij are calculated which relate the poloidal and toroidal fluxes to the poloidal and toroidal currents:

J = -(’+ (’, F = -(’+ (’,



(10)
These are then used for the evaluation of bn,c.

Solution of the radial equation
We describe 3 related methods for solving (8), each generalizing  the method in [1] in somewhat different ways. Method-1 has already been implemented, and is successful on 2D equilibria, but has not yet been successful on 3D equilibria, for reasons indicated below. Accordingly, we have recently begun studying Methods-2 and 3, developed to rectify the problems encountered with the 1st method.

For Method-1 we write (8) as

-A u1-C u2 = Dk vk,








(11)

where uj=1,2({(((((((2} and  vk=1,5({(0p(FF(F2, (F(()(, (F(()}. Making use of the great redundancy in Eq.(8) pointed out by CT, we take flux-surface averages <hi(x)(10)> of Eq.(11), with hi=1-6(x) 6 independent “test” functions, yielding 6 independent equations

-Bij uj = Eik vk ,








(12)

(summation over repeated indices j=1-2, k=1-5 implied), with 

Bij( <hi {A,C}>, Eik(< hi Dk>. We first solve (12) for the vk in terms of the uj, making use of equations i=1-5. Thus restricting i to the range 1-5 there, we solve (12) by inverting Eik:

vi = -Fij uj, with Fij( Eik-1 Bkj (i=1-5, j=1-2). 





(13)

Putting this into the i=6th equation, one obtains

Gj uj = 0, with Gj(B6j – E6k Fkj (j=1-2). 





(14)

Eq.(14) is of the same form as CT obtain in [1], (((((u1/u2 = -, with (G2/G1, solved for (( by quadrature as in [1].  From this, one computes the uj, and from (13), the vk, which give p’ () and F(). These are then used in Eqs.(10) to get J(), ’().
Consistency Relations (CRs): From the {uj,vk}(), one notes that there are relations which must hold among the basic profiles {p’,((,F}(), not imposed by the solution method. One has 

u1 = u2(/2, v2 = v3(/2, v4 = v5(,







(CR1)

and

u2v3=v52.









(CR2)

Finally, pressure balance gives 2 expressions for v1( p(:  

p(= (J((( –F(’)/V’,







(CR3)

where V((dV/dV((2()-2x(volume within ). These CRi hold only if the coefficients {A,C,Di} are from proper MHD equilibria.

Test Case-1: We apply Method-1 to the 2D Solovev equilibrium, with flux surface shape:

R2(() = Rm2 + 2cos(, 
z(() = sin(/[(R2-2)]1/2, 
(16)

where Rm2([((2+(2)/2]1/2, ((R0+a, ((R0-a, and ((( < (
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Test Case-2: 3D Equilibrium:  To leading order in an expansion around a circular magnetic axis, flux surfaces for an N field-period stellarator have elliptical toroidal cross sections: 
R = R0[1 + {cos(cos()}],

z = R0[sin(sin()}].          



(17)

Here, R0 is the radius of the magnetic axis, ([0,1] is a flux surface label,=0/R0 is the expansion parameter, 0 is the average minor radiusof a flux surface, and ([0,1]controls the ellipticity of the flux surfaces. For a vacuum configuration (p’=0=F’), the rotational transform at the magnetic axis is   0 = N/(1+2) (eg see [4]). With shape Eq.(17), analytic expressions for A, C, and the Di appearing in Eq.(8) can be found, by expansion to leading order:
A = a1-a2cos(2+N), C = -1(a1+a2cos(2+N)),


(18)

D3 = 0, D4 = b2cos(2+N), D5 =-b1–b2 cos(2+N), 

where

a1 =(1+2)/R0202(1-2)2, a2 =2/R0202(1-2)2,

b1 =2N2/R03(1-2), b2 =N/R03(1-2).         


(19)

Assuming a vacuum configuration (p’=0=F’), we can also assume D1=D2=0 in Eq.(8). Method-1 does not work on this 3D model, first because it requires one more independent test function than there are vk functions to determine (namely 6 in the general case, and here, because D1=D2=D3=0, only 3), while from (18) one sees there are only 2 independent test functions, namely h1= 1 and h2=cos(2+N). Method-1 also fails thus far for 3D equilibria with a rich spectral content. The problem appears to lie in the consistency relations: To solve Eq.(8) one should not consider F2 to be independent of FF(, or (F(()(to be independent of(F(().
Method-2: Defining new variables X=((2 and Y=F((, Eq.(8) for this model becomes

(A/2)X'C X = –D4 Y’-D5Y.






(20)
Taking 2 flux surface averages of Eq.(20) yields a matrix equation

[ X',X][ Y’,Y]                       

(21)     
where ,   are 2x2 matrices. One can solve for Y’,Y as functions of X’ and X to obtain

Y’=-[()11X’+()12X], Y =-[()21X’+()22X]. 

(22)

Equating the RHS of Eq.(22a) with d/d of the RHS of (22b) yields a 2nd order d.e. for X, which is easily solved for X(2, hence ((=((=1. Using this in (22b) then yields Y and so F=2((=1 a1/b1 = constant, as required for a vacuum solution. Using the derived expressions for F and ((, expressions a1 and b1 from Eq.(19), and using (g =02R0(1-2) from Eq.(18),  we obtain an expression for the rotational transform at the magnetic axis, 0=((/(g)/(F/R02): We find  0 = N2/(1+2), in agreement with the known value of 0  for the model equilibrium[4].
Method-2 is easily generalized to the case where p(,F(( 0: Variables X and Y are supplemented with a 3rd variable Z(F2.   <h1(x)Eq.8> is used to eliminate the p( term, and an additional 4 independent averages lead to a second order d.e. for X=((. After solving for X,   algebraic substitution again obtains F.  Though Method-2 incorporates several consistency relations, the nonlinear CR2 has not been incorporated. While Method-2 has successfully demonstrated inversion of the model 3D equilibrium, it remains to be seen whether it can successfully invert a full current, full beta NCSX equilibrium. To test this, Profile_Invert will take plasma shapes from the output of VMEC equilibria. Predicted profiles from Profile_invert will then be compared with the profiles originally input to VMEC.

Method-3: An alternate solution method to Method-2 writes Eq.(8), after the p( term has been removed, as
X’= X ,                     



(23)   

where X([X,Y,Z]([(((F((),F2], and are 3x3 matrices of the coefficients already displayed. This is a system of 3 1st-order o.d.e.’s, which may be simply integrated in . It does not require taking higher derivatives of the coefficients as in Method-2. The merits & weaknesses of Methods 2 & 3 are under study.
Summarizing, we have built a code Profile_Invert which implements a method described earlier[3] for inferring the radial profiles of 3D equilibria from only knowledge of the flux surface shapes.
Method-1 for solving the radial equations is successful on 2D equilibria, but thus far not on 3D equilibria, probably because of difficulties satisfying consistency relations in the equations. Two additional methods are now under study which should help to remedy this problem.

Applying Method-2 to a model analytic 3D equilibrium, we have analytically established that 3D profiles can in fact be inferred from the basic equation (8) of the method. 
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Figure 1
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The profiles {p’,((,F} and coefficients {A,C,Di} can be obtained analytically, and compared with the numerical calculation from the code. The results are shown in Fig.1. On the left are shown (a) the numerically-inferred profiles, and on the right are (b) the analytic. One notes good agreement, except for some deviation near the origin, where rapidly-changing coefficients make the radial  derivatives in the calculation inaccurate (10 mesh pts used).
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