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Semiclassical energy levels for linear molecules
Application to OCS
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Semiclassical energy levels and frequencies are obtained for the ground
electronic state of OCS using the potential of Foord ef al. [10]. Certain
rotational corrections were neglected, as explained in the text. The
frequencies typically differ from the calculated quantal values by about
0'2 cm for the lower vibrational levels and about 2 em™! for the higher ones.
Fifty levels were obtained using 145 s of CDC 7600 computing time.

1. INTRODUCTION

The same potential energy surfaces and the same dynamical equations
control the interaction between three atoms in collision, such as O + CO -0+ CO
and when those same atoms are bound together to form a molecule such as CQO.,,.
Following the early caiculations of Wall ef al., Blais and Bunker, Bunker and
Karplus and Raff [1] classical trajectory methods have become an essential part
of the theory of atom-molecule collisions. By contrast the application of
classical and semiclassical theories to bound states of polyatomic molecules has
yet to make its mark. There have been two impediments. One is that most
spectroscopic observations in the past have been restricted to relatively small
regions of potential energy surfaces, where the quantal calculations are feasible.
The other is that the relationship between bounded classical motion and the
observed spectra is more subtle than the relationship between classical trajectories
and observed average cross sections.

Both these impediments have now been removed. The relationship between
classical motion and spectra has been clarified with the recognition of the distinc-
tion between regular and irregular spectra and through the application of Einstein—-
Brillouin~Keller (EBK) quantization to the regular spectrum [2]. The use of
lasers is extending the observed spectra into regions where standard quantal
perturbation methods break down and the number of coupled vibrational states
becomes so large that the matrix methods become clumsy or impractical. This
includes the region of large quantum numbers where semiclassical theories are at
their best. Semiclassical and quantal methods are complementary.

The classical analogue of the quantal bound state is the invariant toroid [2,
3,4). Semiclassical energy levels are the energies of those invariant toroids with
quantized action integrals I, (not to be confused with moments of inertia}) of the
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with integer n,, where «, is the Maslov index [2]. 'The problem is to obtain the
invariant toroids and their action integrals. Analytic perturbation methods can
be used close to equilibrium, as in quantum theory, but break down for high
vibrational levels, as anharmonicities increase.

Three numerical methods have been used

(M1) Stepwise integration of trajectories, This allows arbitrary distortion of
the toroids, but estimation of the action integrals is difficult, particularly
when the number of degrees of freedom increases beyond 2. It has been
applied by Marcus and co-workers [5] and by Sorbie and Handy [6] to
model systems of two degrees of freedom.

(M2) Hamilton—Jacobi method. This does not allow arbitrary distortion of the
toroids because of the awkward topological properties of the generating
function of a canonical transformation. The associated singularities also
affect convergence but the action integrals can easily be obtained. It is
familiar as a numerical form of the theory presented by Born [7]. It has
been applied by Handy et «l. [8] to vibrational states of HyO and S50,

(M3) Iteration—variation method [3, 4]. This makes use of a parametric
representation of the toroid and allows arbitrary distortion, although large
distortions are more difficult to handle than for (M1). 'The estimation of
action integrals from the toroid is easy.

The experiments of Fayt and Vandenhaute [9] and the quantal calculations of
Foord et al. (FSW, [10]) and Whiffen [11] on the ground electronic state of the
OCS molecule are very suitable for comparison with semiclassical theory, The
masses of all atoms are sufficiently large for the semiclassical approximation to be
reliable and the anharmonicities are sufficiently great to provide an adequate test
of the theory, However, OCS is linear and the consequent degeneracy of the
bend modes requires a partial solution of the vibration-rotation problem. This
paper gives a partial solution using the iteration-vartation method (M3).

FSW use Hougen’s isomorphic hamiltonian expressed by Watson [12] in the
form

Hio=4 T P +5 (0,24 1,%) = ol 1) 4 (r2 4 )+ V(R). ()

They divided their quantal calculation intotwo parts. The first part was an ‘essen-
tial calculation’ which involved diagonalization of the vibrational hamiltonian

Hyyp=} L P2+5 (m+m,2) + V(@) 3)

using a harmonic oscillator basis set. The energy levels were tabulated for 69
values of the vibrational quantum numbers (v,, v,!, v3). The second part was
concerned with perturbations due to the remaining terms of H;,,, giving rota-
tional splitting as a function of the rotational quantum number J.

Our calculation is the semiclassical equivalent of FSW’s essential calculation,
except that the term (n/2)(7,? +m,?) is included as a first-order perturbation on
the remainder of H_;,. This is the precise semiclassical equivalent of the use of
quantal first-order perturbation theory for (u/2)(m,2+7,?) using the eigenstates
of the remainder. According to FSW this term does not contribute more than
5cm™! and the off-diagonal elements do not affect a transition by more than
0-15 cm™1,
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We do not attempt the second part of the calculation concerning the J quantum
number. Only the essential calculation is carried out, because at this stage our
purpose is to investigate the validity of semiclassical methods and is adequately
fulfilled by comparing the results of the essential calculation using the same
hamiltonian in semiclassical and quantum theories.

2. A SIMPLIFIED MODEL FOR THE BEND MODES

The vibration of a linear triatomic molecule such as OCS has two stretch
modes and two degenerate orthogonal bend modes. If at first the coupling
with the stretch modes is neglected, the bend modes have a hamiltonian of the form

1
Hy(x, 3, o P) = U+ %) + 5 (022 + 17, *)

where U(z) is a smooth even function of z. This is identical in form to the
hamiltonian of a particle moving in a smooth central potential in the (x, y)-plane
with rotational symmetry, and it is in these simplified terms that we shall discuss
the problem.

It is important in any calculation to reduce the effective number of degrees of
freedom and to take advantage of any symmetries which enable one to do so.
The simplified system (4) can clearly be solved by separating in polar coordinates
(¥, ¢) but this introduces considerable difficulties if it is used for the original
problem of the linear molecule. In both cases the separation produces a singular
potential. For the simplified system this has the form L2/r®, where L is the
angular momentum, but the singularity has a much more complicated form for
the original problem. Such singularities are to be avoided if possible for non-
separable systems of more than one degree of freedom,

The iteration—variation method is described in papers I and II [4] to which
the reader should refer. It is based on a parametric representation X(0) of a
toroid in phase space. With this representation the effective number of degrees
of freedom may be reduced without introducing new singularities. We show
how this is done for the simplified system with hamiltonian (4).

A standard toroid for this system is two-dimensional ; it depends on two
angle variables 8, and ¢, say, which are conjugate to the action variables I, and
L=1I;, But the explicit dependence on ¢ can be removed. 'The angle variable
¢ represents a rotation of both the position (¥, ) and momentum (p,, p,). The
hamiltonian is invariant under this rotation, resulting in conservation of the
conjugate action variable L.

Because ¢ represents a rotation of the system, the toroid can always be

expressed in the form
X(0,, ¢)=R($)Y(8,), (%)

where Y(8,) is a one-dimensional toroid (or closed trajectory) and #(¢) is an
operator that rotates both the position and momentum vectors of the phase point
Y through an angle ¢.

We are left with the problem of obtaining the reduced toroid ¥(6,) which
depends on only one angle variable instead of two. The number of dependent
variables of the phase point Y remains unchanged at four but the time of com-
putation of Y depends almost entirely on the number of angle variables, which
determines the dimensionality of the arrays which appear.

2x2
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The use of this representation for the toreid is equivalent to the use of a
rotating frame, but unlike the usual classical rotating-frame methods we do not
use the invariance under rotation to remove the angle of rotation from the
hamiltonian, because this leads to the singular potentials that we wish to avoid,

3. VARIATIONAL PRINCIPLE AND ITERATION EQUATIONS

The angle hamiltonian equations are obtained from the variational principle
for invariant toroids [3]. In using this variational principle we must obtain
mean values over the angle variables. For the variable ¢ this is achieved by
taking the mean over the rotations #(¢).

For convenience we introduce the complex notation

g*=ﬂ (6 a) 1

{= x+iy
2 72 ®a
e L i
P§ = Z \/zpy, P{:* = 2 \/zpy, (6 b)
so that the phase point is represented as
X=(C! C*’ Pg: Pg*)- (7)
The action variables are the action for radial motion
o . oC*
Ir_<P§a_Br+P§ a_gr> (8)
and the angular momentum about the origin
L=i{lp,—1*p*>, (9)

where the means { > are taken over 8,.
The mean of the Hamiltonian over the toroid is

CHYX)> = CH{Y)) =<U(2cc*) e pgpg*>, (10)

where the first equality follows from equation (5) and the invariance of the
hamiltonian under rotation.

The functional

O=H Y)—w, I —wil> (11

is stationary with respect to variations in Y(f.) subject to the action integrals
remaining fixed [3]. «, and w, are Lagrange multipliers which can be inter-
preted as frequencies for the radial and angular motion respectively.

To first order in the variations

0=AQ
= (288 )‘f‘;Png — Wy Pgé‘é;‘"Pg 20, —awgd({pe—L*pc*) ) (12)
If we neglect complex conjugates we obtain two independent equations
o . 1
(wr a_erﬂ%) t=L g, (13 )

N oU(2{0*
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which may be combined to give the second-order ‘ newtonian ’ equation
o . 1 2U(2L0*)
— I QR ek
(wr 89r+1w¢) . T (14)

The last equation is used as a basis for an iteration scheme, The actual
iteration of these equations is carried out for Fourier components {,, where

()= X_toexp () (15)

and similarly for {¥, p, and p,*.
We suppose that U is expressed as the sum of a harmonic and anharmonic
term

U2L0*) = mQ? [L* + U=eh(20[*) (16)_

and that ¥, is a force derived from the anharmonic part
0
Fganh(Z;C#)= _a_é’# Uanh(ZCC*)_ (17)

The iteration equation can therefore be written as
m [QF — (5w, + cwy 2] L, = Fyonh. (18)

Action integrals are related to frequencies and to Fourier components through
the moment of inertia matrix equation [3].

o] o

e\ [ e £ e fe
S : (19)
t) S e § k|,

Equation (19) leads to the following method of deriving the magnitudes |{,]
and [{_,| of the fundamentals

1 |1+ L
a__ - 14 T
24l =Im wriw¢’, (20 a)
where

;l'{:IP—Zm‘:);QO S(Swr+w¢)|‘:s!2, (20 b)

[s]#1
L'=L-2m Z (swr+w¢)lcs|2. (20 ¢)

s= — 00

Is] #1

The phases of {; and {_, are obtained from the conditions |x;| = |y,| and {; ={_,*
by using geometry in the complex plane. This gives (1+7)/ /2 for the value of
the phase factor of both {, and {_,.

A semiclassical energy level E,, 5 of the hamiltonian function (4) is given by
the mean energy over the toroid with action integrals I, L which are quantized
according to the rules

I.=(vy+ 1), (21 a)

L=1, (21 B)
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where v, and [ are integers, the vibrational and rotational quantum numbers,
which must satisfy the conditions

v,20, |l|<v, v+l even (21 ¢)

The iteration procedure is similar to that of paper II except that a modified
form of equation (18) is used for the iterations. We describe the modification
for the simple model but it is also applied to the case of OCS in §5. The
modification is important in the neighbourhood of small divisors, It consists of
rewriting equation (18) as

{= (Qz_ wrZ)gs_nganh/m
* s+ Dot agll(s— 1w, + wy]

(22)

For the computations the numerator of (22) is obtained from the Fourier integral
of the function (22— w,2){(6,) — F***(8,)/m. If the denominator of (22) becomes
very small we shall say that a small divisor has occurred.

4. A TEST OF THE THEORY

To test the theory and method outlined in the previous section the iteration
procedure was applied to hamiltonian (4) with

Ulx*+ y%) = g Q% (%% + 3) + Ropag(2® + ¥)%. (23)

When expressed in terms of the complex coordinates with which the theory was
developed, the hamiltonian is

1
Hy=— pepg*+m Q5 (0% +4kaag({)% @4

Choosing Q,=523:62, kyyp,=1-77€2,2 and units such that A=m=1, semi-
classical energy levels E,, 3¢ for selected values of v, and [ were calculated using
iteration equations (22), (19) and (20). These energy levels are presented in
table 1 and were obtained without difficuity.

If we express (24) in terms of polar coordinates (r, ¢) where ¥?=2{[*, the
hamiltonian becomes

1 N m
H2 = E; (PI‘2 +?;;’;) + E sz r2 - k2222r4‘ (25)

This hamiltonian is of course separable, so we can write
ps=constant (angular momentum)={ (26}

and obtain the one-dimensional hamiltonian with /7 singularity

1

2 Moz :
H2=Z'npr +E Q2 r*+

zmrz + k222274. (27)

As mentioned in the introduction, the singularity is precisely what we have
sought to avoid with the new theory. However, the calculation of semiclassical
energy levels E, ,SC of (27) provides a convenient check for the theory, since
energy levels furnished by the two methods must have identical values.
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Table 1. Semiclassical energy levels for 2 model hamiltonian representing the uncoupled
bend modes of OCS.

1
Hz=‘;1 Pep® +m 0% [D* + dhygu{LL* P, ‘
(3, =52362 cm™,
Roges = 1-7702,% cm—3.

hi=m=1
Energy Anharmonicity

Level Esc AFEanbt
(v, ) cm™! cm!

00 526-25 263

11 1056-80 9:56

22 1590-72 19-85

20 1594-10 23-24

33 2127-92 3344

k¥l 2134-61 40013

4+ AE®nh are the energies by which the semiclassical levels are exceeded by the values
they would have if the anharmonic force was neglected.

Energy levels of (27) were calculated using the standard techniques of paper
I1 for non-degenerate hamiltonians, The quantized action integral for this one-
dimensional problem is defined by

I=(n+1)h, (28 a)

where

n=(vy-1)/2. (28 b)

For the one-dimensional problem it proved to be difficult to obtain con-
vergence because of the singularity. If was necessary to increase I by small
increments from zero to its quantized value defined by equation (28). In this
way it was eventually possible to reproduce identically the values E,, ;8¢ obtained
by the new method. The superiority of the new method was amply demon-
strated for this simplified case.

5. ArpLicaTiON TO QOCS

The potential energy function for a linear triatomic molecule such as OCS has
the form

3
viey=4 iZl Q202+ iz; ki Q:0,0: + .JZ;,?’E RiriD:0,0:00+ - - (29)
= v s LR
where the prime indicates the restricted summation i< j <k [10]. Normal co-
ordinates O, and J; refer to symmetric and asymmetric stretching vibrations.
respectively, while (J, is the (degenerate) bending coordinate. V(@) is an even
function of O, . (3, £2,and (), are the equilibrium classical vibrational frequencies
For their quantal calculations, FSW include all terms in the potential
energy up to fourth order, and also retain the quintic term Kgp,30.t O3 to
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adequately represent effects due to the near equality of 4Q, and Q, and the
resulting Fermi resonance. The potential constants appear in table 2. We use
Watson’s normal coordinates instead of those of FSW, consequently the % co-
efficients appearing in table 2 differ from those in [10] by a frequency factor.

Table 2. Constants for 1*02(C325 hamiltonian.

Constant Value
£,/(ccm™) 87570
Q,/{c cm~1) 523:62
Quf(cem™) 2092:46
Ry /O3 em™1 —3359
ky1af 0.1 em! 53-52
Rigaf 2,12 Oy cm? 42:95
Fyaaf Y2 Q5 cm—? —125-24
Rasa/ Q24 em—? 51-30
Raga/ €232 cm? - 6701
R/ Q% em™? 1-55
Ryy1a/ %7 Q1% em! — 440
k119/ €4 Oy cm™? — 495
Ey13af Q0 ™! 6-40
Rygaaf Q1% 3,0,1/2 ¢cmi—? —-2-38
Ryaasf €212 372 et 0-84
kooss/2* cm ! 1-77
Roaa/ 2,25 cm ! -19:28
Fgagaf Q% cm ™! 3-98
Fagasa/ Qg% Q12 cm~? —045
Piud) 8296
ayfut? A 17-90
ag/ut/z A 331
{10 — {1815
Loa 0-9833

The kinetic energy function for OCS for the essential calculation has the form
] ¢
T=} ¥ P2+b(mremy. (30)
=1
P; are momenta conjugate to Q; and (u/2)(w,%+w,?) can be written as

5 (@t +m2) =5 (L 0P OuP) + L QuPy — OuP) . (31a)
where

p= L0+ 4ay 01 + §as0q)* (31 6)
I% is the moment of inertia for OCS in its linear equilibrium configuration and

{12 and {y, are Coriolis coupling coefficients. Values for the constants appearing
in equation (31} are given in table 2.
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Since the contribution to the total energy of the term (u/2)}(7,%+ #,?) is small
(£ 5 cm! for the higher levels computed [10]} compared with the anharmonicity
introduced by V(@) (typically 100 cm™! for the higher levels), it is a good ap-
proximation to consider (u/2)(m, 2+ m,?) as a perturbation on the hamiltonian

H=} i P+ V(@) (32)
i=1

with V(@) given by (29).

Incorporation of the theory and method of § 3 into a scheme for calculating
semiclassical energy levels of (32) is straightforward. Here we write only the
iteration equations for the Fourier components of the toroid :

Bend :

(Qz2__ wr2)€ . F; .unh

= 33
s [s100y + (52 + D)y + 53005 + g ][51001 + (55— 1 )ew + S + wgb], (33 2)
(Q12 - “J12)Q1 s FQ; anh
= * . 33b
Q1. (514 D)oy + 8500, + 53005 ][(51 — 1 oy + 5300, + 53005] ( )
Stretch :
(032_ waB) Oy — FQ anh
- is , 33
Qs [$107 + 5p00, + {53+ D)y ][53001 + spe0, + (55 = 1)ey] (33)
where
$ = (8, 53, 53), (34 a)
W2=200* (34 5)
and
aVa.nh
anh _— __
Fo. 0, (34 ¢)

(N.B. The complex coordinate { and Fourier components {, should not be
confused with the Coriolis coupling coefficients {;, and {,5.)

A quantal energy level of (32) is labelled by four quantum numbers (z,, ©,' z,).
These are related to four classical action integrals by the following semiclassical
quantization rules :

Ii={vi+$)A, (35 a)
I =(zy+ 1), (35 8)
L= {35¢c)
Ii=(vg+ 1A (35 d)

After calculating each desired toroid and energy E of equation (32) the
precise semiclassical equivalent of quantal first-order perturbation theory is
used to determine the contribution to the total energy of the term (u/2)(m 2+ #,2).
This simply involves the calculation of

et (¥
Ev t4<é (w12+ﬂ,,2)>, (36)
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where ¢ > denotes a mean over the calculated toroid. The energy EPett g
added to E and each sum is compared with the corresponding quantal energy
level calculated by FSW to give a direct evaluation of the precise of semi-
classical (EBK) quantization. This evaluation is subject to an error of no more
than 0-2 cm~! in the energy of the classical toroids and to any errors there might
be in the quantal calculation.

6. COMPUTATION METHOD

A reduced toroid (§ 2) for the linear OCS molecule depends on three angle
variables. Each triply periodic function f4(8,, 8,, 8;) is approximated by a finite
Fourier sum of N;x N,x N, terms, The functions f; are tabulated on an
N x Ny = N; mesh of equally spaced points spanning the space of the angle
variables —w< 0, €7, —w<f, <7, —w<fy<a. Mean values are calculated
from tabulated meshes.

The presence of small divisors can affect convergence of the iteration
procedure. A small divisor occurs whenever calculated frequencies approxi-
mately satisfy a low-order resonance condition such as a Fermi resonance. Ifa
small divisor appears during the iterations for a toroid, the Fourier components
associated with that divisor become large. As a consequence the new funda-
mentals calculated from the moment of inertia matrix equation become artificially
small. Since frequencies are calculated from fundamentals, small divisors lead
to fluctuations in the frequencies which affect all Fourier components of the
toroid at the next stage of the iteration.

Energy levels are calculated from converged toroids with quantized action
integral. An invariant toroid can only be considered to have converged if from
one iteration to the next no Fourier component of the toroid changes by more
than a chosen tolerable amount. Associated with each energy level and cor-
responding converged toroid is a set of frequencies which may satisfy a low-order
resonance condition. If this is the case, the iteration procedure may never
produce the desired converged toroid or the correct semiclassical energy.

Clearly there are too many Fourier components to test individually. Instead
we choose to test for convergence of the energy, at the same time checking for
fluctuations in the frequencies and fundamentals which would indicate the in-
fluence of small divisors. First a crude convergence criterion 'TOL1 say, is
chosen and the iterations carried out, retaining only the fundamentals and
constant terms of the Fourier series until the difference between successive values
of the mean energy is less than TOL1. For this stage no small divisors can be
encountered. When convergence to TOL1 has been achieved N, N, and N,
are increased, typically to eight, and the iterations proceed until the difference
between successive mean energies is less than a new tolerable value TOL2 < TOL1.
If there are no important small divisors then TOL2 will determine the accuracy
of the semiclassical energy. A further increase of the N, is required to leave the
energy unchanged to within TOLZ.

To obtain an energy spectrum the invariant toroid for one energy level is
used as a starting-point for the iterations for the next level. Further details can
be found in paper II.

The computer program was tested by separately uncoupling each vibrational
mode from the remainder. Energy levels were calculated for the resulting
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partially separated systems and compared with levels produced using a combina-
tion of well-tested programs [4] and the method of § 4 for treating the angular
momentum.

For the computations using the empirical OCS potential of Foord et al.
reported in the following section, TOL1=1-5 cm™ and TOL2=0-1 cm™ were
chosen as convergence criteria for the levels and N; = N, = N;=8 defined the final
length of the Fourier series. Additional checks on the convergence of certain
levels were made by further increasing N, or N, or Nyto 16. Visual checks were
made on every level to ensure that calculated frequencies and fundamentals were

well behaved.

7. RESULTS AND DISCUSSION

Table 3 presents the semiclassical energy levels of 180Q12(C323 calculated by the
methods described in §§ 5 and 6, and using the empirical potential of FSW [10].
An attempt was made to obtain all the energy levels of [1(3], but the iteration
procedure did not always converge, and the level is then denoted by a — in the
table. The tolerances allowed are given in § 6. ‘The computation of the 50
converged levels took 145 s on a CDC 7600 computer,

Table 3. Comparison of semiclassical and quantal energy levels for the ground electronic
state of 19012325,

1 2 3 4 5 6
AE (b) Av(d)
Level ESC () (AE) v3C (¢} {Av) Aypsnh (g)
v vt vy cm™! cm™?! cm™?! em~! em™!
0 0 0 1998-1 13 0 0 0
(1-3) (0)

1 00 0 28574 1-0 859-3 -0-3 167
{1-1) (—02)

D 20 90 30449 1:5 1046:8 02 0-2
(1-5) (0-2)

2 00 0 3708-7 1-3 17106 00 40-8
1-3) ©0)

1 20 0 3889-9 16 1891-8 0-3 30:8
(1-6) (0-3)

0 0 1 4060-0 1-4 20619 o1 30-4
(1-3) 0-0)

0 4 0 4103-3 22 21052 0-9 -117
21 0-8)

300 0 45529 16 25548 03 721
(14 (01)

220 0 — — — — 67-9

1 00 1 49165 1-0 2918-4 -03 50-1
(09 (—0-4)

1 4 0 49333 2-5 2935-2 12 338
2-1) (0-8)

0 2 1 5093-2 14 30951 0-1 445
(1-1) (—0-2)

0 6 0 51721 40 31740 27 —349

(3-0) 17
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Table 3 {continued)

1 2 3 4 ] 6
AE (b) Ay (d)

Level ESC (a) (AE) WSC () {Av) Ayanh ()
) vt Uy cm~! cm™! cm ! cm™! cm™!
4 0 0O 5390-0 46 3351-9 33 107-7

{10 {(—03)
3 22 0 — — — — 110-6
2 4 0 — — — — 83-3
2 01 5765-9 1-5 37678 02 758
1 20 1 — — — — 777
1 6 0 — — — — 172
o o 2 6102-2 -1-0 41041 —2-3 83-5
G 4 1 61393 1-9 4141-2 06 451
3 00 1 6607-2 25 4609-1 1-2 109-4
2 221 — — — — 1174
1 00 2 6956-5 -2 4958-4 —4-0 106:2
1 4 1 — — — — 91-1
0 1t o 2518-4 1-4 5203 0-1 33
(1-4) {0-1)
1 1t 0 3370-8 14 13727 0-1 265
(1-2) (—01)
0 3 0 35713 1-7 1573-2 04 —-2:8
(1-4) (0-1)
2 110 — — — — 56-8
1 3t 0 4409-3 1-7 24112 0-4 350
' (1-3) 0-0)
o 1 1 4573-5 11 2575-4 —-02 40-9
0-7) {—06)
0 5t 0 4635-0 2-7 2636-9 1-4 —202
(2-3) 1-0)
3 1t o0 50551 14 3057-0 0-1 93-7
09 e (—04)
2 3 0 — — — — 78-8
1 11 — - — — 672
1 51 0 5457-8 25 3459-7 12 329
(1-6) (0-3)
0 3t 1 5613-1 15 36150 0-2 48-1
0 7t 0 5709-5 43 37114 30 - 490
4 11 0 58871 35 38890 2:2 135-2
I 30 — — P — 1275
2 1t 1 — — — — 100-6
2 5 0 — — — — 86-8
1 3 1 64487 16 4450-6 03 881
1.7 0 — — — -— 92
0o 1* 2 6604-1 1-5 46060 0-2 102-3
0 5t 1 6665-5 2:0 46674 0-7 42-4
3 11 7102-1 33 5104-0 2:0 1372
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Table 3 (continued)

1 2 3 4 5 6
AE (b) Av (d}
Level ESC (a) (AE) ¥5€ () {Av) Apenh (g)
LR AN cm! cm™! cm! cm-! cm™!
2 31 72793 0-8 5281-2 -5 1341
1 11 2 — — — — 131-7
0 22 0 30389 1-4 1040-8 01 63
(0-6) (=07)

1 22 0 3884-8 15 1886-7 0-2 360
07 (—0-6)

0 4 0 4097-5 2:0 2099-4 0-7 —-56
(1-1) (-02)

2 2 0 — — -— - 72-3

1 4 ¢ 4928-4 2:0 2930-3 07 392
(1-0} (-03)

0 22 1 50869 1-3 30888 0 50-9
0-3) (-1:0)

0 62 0 51666 2-8 3168-5 1-5 —28:5
(1-8) {0-5)

3 2 0 — — — — 1147

2 4 0 5753-8 1-8 3755-7 05 89-6

1 22 1 59293 1.9 3931-2 0-6 83-6

1 6 0 5981-2 35 39831 2:2 322

0 4 1 61332 1-5 4135-1 0-2 51-6

0 8 0 — — — — —62-8

4 22 0 63866 08 4388-5 ~0-5 162-1

3 4 9 — — — — 1442

0 3 0 3559-6 i-4 15615 01 93
31) (1-8)

1 3 0 43993 1-4 24012 01 453
(0-5) {—0-8)

0 5 0 4623-8 21 26257 0-8 —84
(0-0) (—1:3)

2 3 0 5232-4 i9 32343 06 874
{(-01) (—1-4)

1 5 0 5447-7 21 34496 0-8 43-4
(-01) (—14)

{(a) Semiclassical energy levels for Ny=N;=N;=8, TOL2=0'1 cm~1,

() AE=E%- ESC, where EQ is the quantal energy of FSW [10]. Bracketed values are
from Whiffen [11]. The illustrated FSW values and the semiclassical values follow the
convention of omitting all #* terms. The Whiffen [11] results follow a different con-
vention, in which — Bl? is included. For comparison add approximately 0-222 cm~1 to the
bracketed values.

(¢) »3€ = E3C— (0 0° 0)5C are energy differences from ground vibrational level.

(@) Av=vR—5C where +Q is the quantal energy difference from the ground vibrational
level [10]. Bracketed values are from Whiffen [11].

(e} A»23h are the energies by which the quantal levels are exceeded by the values that
they would have if anharmonic forces were neglected. 'The value for (0 0° 0) is subtracted
from the entire column.
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Lack of convergence was always due to the presence of small divisors, where
the denominator on the right-hand side of equation (33) became very small.
This problem is not confined to the method used here but arises from an intrinsic
property of the invariant toroids, recognized by Poincaré in his treatment of
celestial mechanics and related to Fermi resonances in molecules. There are
methods for overcoming this difficulty provided the spectrum remains regular
as defined in [2], but a discussion of these methods would go beyond the scope
of this paper.

In table 3, column 2 contains the semiclassical energy levels and column 3
the energy by which these levels are exceeded by the corresponding quantal
levels obtained by FSW [10] and by Whiffen [11] in an improved quantal calcula-
tion using the same potential. In column 4 the semiclassical energy of the
ground level (0 09 0) is subtracted from column 2, giving energy differences
which are proportional to observable frequencies, and in column 5 appear the
energies by which these are exceeded by the corresponding quantal values.

The final column 6 contains the energies by which the quantal levels are
exceeded by the values that they would have if anharmonic forces were neglected.
The value for (0 0° 0) is subtracted from the entire column.

Comparison of columns 3, 5 and 6 provides a measure of the errors.

Handy et al. [8] have applied the Hamilton-Jacobi method {M2) to obtain
five low-lying vibrational energy levels of SO, and H,O which they compare with
corresponding quantal values. For SO, the semiclassical and quantal energy
differences from the ground level agree to better than 0-1 ecm—*.  For H,O, which
exhibits stronger anharmonicities, agreement is to about 1-5 em~! for the worst
case. This is comparable to the calculated difference for OCS. It 1s expected
that the character of the molecular potential and not the difference in method
accounts for the excellent agreement for 50,

The iteration—variation method described in this paper is fast, and obtains the
main features of the observable spectrum of a linear triatomic molecule, but the
precision, as measured by the difference between quantal and semiclassical
energy levels, does not approach that of modern spectroscopy. The errors are
either due to the inadequacy of the lowest order semiclassical approximation, or to
errors discussed at the end of §5.

The necessity of taking special account of the presence of small divisors when
calculating the toroids is apparent, and also possibly when obtaining corrections
of higher order in 4.

We should like to thank Professor Whiffen and Dr. Fayt for helpful dis-
cussions. Drs. Handy, Colwell and Miller for a preprint, and Dr, Handy for very
helpful criticisin and suggestions. We also thank the S.R.C. for a research
grant.
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