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ABSTRACT We consider the propagation of weakly non-
linear waves such as plasma waves, surface water waves, the
interaction of laser beams with matter, particle accelerators,
etc. Specifically, we study internal waves in the ocean. Hamil-
ton’s principle is used to write the fluid equations in Hamilto-
nian form in terms of linear eigenmode amplitudes. Numerical
studies are made of the effect of Fourier grié) size and resonance
widths. Statistical information is generated from an ensemble
of initial states of the random wave field.

1. Introduction

In this paper we study the statistical properties of weak turbu-
lence associated with nonlinear wave-wave interactions. Spe-
cifically, we apply the analysis to buoyancy-dominated tur-
bulence of internal waves in the ocean. Stable stratification, a
characteristic of the oceans, implies an equilibrium depth about
which each fluid element oscillates. The resulting “almost
two-dimensional” system avoids some of the complexity of fully
three-dimensional weak turbulence.

Formally, our wave system corresponds to a set of harmonic
oscillators with weakly nonlinear couplings. Similar dynamical
systems are encountered in the study of surface water waves
(1), plasma waves (2), the interaction of light with matter,
particle accelerators, and other branches of physics (3).

Weakly nonlinear oscillator systems have been studied by
several statistical models. Use of random phase and two-time
scale approximations allows termination of a sequence of cou-
pled moment equations to give a Boltzmann-type transport
equation (4-6). In a future publication we will show how the
fluctuation-dissipation theorem and the Krylov-Bogoliubov-
Mitropolsky (KBM) perturbation method can be used to obtain
Langevin and Fokker-Planck equations.

These models can be compared with numerical solutions of
the equations of motion, providing evidence for the validity of
the approximations used. The ocean internal wave system lends
itself particularly well to numerical computation because of the
almost two-dimensional nature of the equations. Recently, the
Hasselmann transport theory (4) has been applied to this system
by McComas and Bretherton (7) and Olbers (8).

We derive an explicit Hamiltonian to describe the nonlipear
transfer of energy among the linear eigenmodes of the internal
wave field. A “test wave” model is developed, which can be
used to compare numerical results with statistical models. This
model describes the propagation of a single labeled wave
through an ambient medium. Computational methods for in-
tegration of Hamilton’s equations are also discussed.

2. Dynamical formulation of the wave interactions

We consider as a model a “plane” ocean of uniform depth and
having rectangular area Z. Periodic boundary conditions are
used at the sides, and the top (z = 0) and bottom (z = —H)
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surfaces are assumed rigid. The equilibrium fluid density is p(z),
a monotonically increasing function of depth. The quantity

N(z) = [—éd—p]m 2.1]

p dz
is the Viisila, or buoyancy frequency (g is the acceleration due
to gravity). The fluid is incompressible and inviscid.

We introduce a Lagrangian and use Hamilton’s principle to
obtain the equations of fluid motion. The Lagrange coordinate
of a fluid particle at time ¢ is Y(r,t), in which r = Y(r,0) is its
position at t = 0. The appropriate Lagrangian per unit area
is

d3 ~ ;
L= fz_:(‘/zplYI“pg'Y-l/zﬂf'<YXY)

+Pr) I J (3—3—) - 1]) 2.2]

[This Lagrangian is discussed by Bretherton and Garrett (9).
MecComas and Bretherton (7) use Lagrange’s equations for their
discussion.| The first three terms in the integrand represent,
respectively, kinetic energy, negative of gravitational potential
energy, and rotational energy due to Coriolis coupling. The
quantity f is twice the angular frequency of the earth’s rotation.
The final term expresses the constraint due to incompressibility:
P is a Lagrange multiplier and J is the Jacobian of the trans-
formation r — Y.
Hamilton’s principle states that the functional

t
"Ldt

t

I= [2.3]
is stationary with respect to arbitrary independent variations
in Y and P, which vanish at ¢; and ¢4 and at the boundaries of
the fluid. In particular, variation of P yields the incompress-
ibility condition

Y
—|=1 2.4
13-, 2.4
and variation of Y yields the equations of motion
pY—pg+pf><Y+%P=0. [2.5]

The Lagrange multiplier P can therefore be identified with the
fluid pressure. It may be considered a function of Y and ¢ in the
Lagrangian because this adds terms with zero variation.

Rather than use Eqs. 2.4 and 2.5 directly, we develop a per-
turbation-variation approach with the aim of obtaining a
Hamiltonian that describes the lowest-order nonlinear internal
wave motions. Following Bretherton and Garrett (9), we define
the displacement

£rt) =Y(rt) —r,
and consider |£| to be a small quantity. Expanding P(Y,t),

2.6]

Abbreviation: KBM, Krylov-Bogoliubov-Mitropolsky.
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substituting into Eqs. 2.2, and omitting terms independent of
£ yields

dST . #
= [ ol + o £~ ook - (X B
0

= (&-V)P(r,t) = ol&&ViV)P(t) + ... ] [2.7]
Next, we define the pressure fluctuation
w(r,t) = P(r,t) — P(r) [2.8]

and assume it is a small quantity of the same order as | £|. Using
definition 2.8 in Eq. 2.7, we obtain

L=L1+L2+L3+.,.,
_ (d3
L= .fzo
L= [T olé =21 Gxo
- (f -V)w — 1/2(£i£jvivj)P(r)L

— Yo(£:i&;6x ViV Vi)P(x)].

(2.9]

The equations of motion in each order are obtained by
variation of the action with respect to £ and 7. Variation of I;
with respect to £ identifies P(r) as the hydrostatic pressure, V5P
= —pg. Subsequent elimination of P from the Lagrangian al-
lows us to ignore I} from now on.

The linear equations of motion are obtained by variation of
Is:

dr

Lao=
3 21()

/2 Ezg]v V

pE+ pE X £+ Vi + pN2£gé =0
V-£E=0, [2.10]

in which N2 is defined by Eq. 2.1.

We now neglect the horizontal components of f (see, for ex-
ample, ref. 1, p. 239). This enables us to separate the horizontal
and vertical parts of Eq. 2.10 and expand £3(x,z,t) in the rec-
tangular area 2 as’

B(xat) = ¥ % Alalt)Wka (R)e*>

Aka = Akq (2.11]

(the first sym extends over all positive integers «). Our task will

be to obtain an expression for the Lagrangian 2.9 in terms of

the field amplitudes Ayq(t).
Straightforward algebra yields

(N 2 — w?(k)

V3pV3Wi, + pk? _f

) Wkoz - 0;
walk) > 0,
Wio(—H) = Wi (0) = 0. [2.12]

This is a Sturm-Liouville equation for the modefunctions
W a(z) and eigenvalues w,(k). The orthogonality relations

o P8

are readily deduced from Eq. 2.12. The quantity po may, for
example, be chosen as p(0). The Fourier amplitudes A, satisfy
the equation

— PAWioWipdz = 6o [2.13]

Aku + w(k)Aka = 0. (2.14]

¥ Hencefort h all vectors with the exception of f will be two-dimensional
in the horizontal plane.
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The horizontal displacement £}, is expressed in the form

Bulxat) = 33 likaw, + (kX DBu) 13

k w k(xeik'xa

2.15]

in which Byy = Ay and W’ = dW /dz. The pressure fluctuation
is then

1., .
=—p Z Z Akoz +f Ak(y K2 W;me’k"‘. [2.16]
These expansions may be introduced into expression 2.9 for Lo
to give

e
SRR

1 .
5 (AkeA —ka = W3(K)AkaA 1) .
1 T |w3k) - £

[2.17]

The variational principle allows us to obtain Lg and Lg from
the linear expressions 2.11-2.16. In particular, we may use Eq.
2.14 to eliminate time derivative terms from L. It is important
to realize that the nonlinear fields will continue to be expressed
in the form 2.11-2.16 except that 2.14 will be modified.

To express our equations in Hamiltonian form we replace
the Fourier amplitudes Ay, by canonical action-angle variables
(see ref. 10) Jxa, Oke:

i

Ay = —F=——=
V2Walrha

me—iﬁkn_ \/Eei()_kﬂ
=5 = 7 2.18]

The resulting Hamiltonian is obtained after straightforward
but tedious effort:

H=H2+H3,

H2 = Zk wu(k )]I(IY)

Hs= “Z (i) V2 {0k1—m1(kslm)
X expli(O0x — 0 — 0,n)]

+ Orremla(k,LLm) expli(Ox + 01 + 0,,)])
+ complex conjugate. [2.19]

(The coefficients I'| and I' are given in the Appendix.) To
simplify notation in Hs we have written k for the index pair
(k,«0), etc.

For linear waves, corresponding to neglect of Hs, we have

Tka =0, 0o = walk). (2.20]

Because Hj is assumed small compared with Hg, terms in-
volving I'; are rapidly oscillating on the time scale of energy
transfer among the modes. We shall henceforth neglect these
terms.

Another set of convenient variables are the dimensionless
action-amplitude variablest

ko [20e V2
o« =TT T 0ka, 2.21
T NoVEB (ekwwa ¢ 2211
They are related to the original Fourier coefficients Ay, by
N VB .
Aka = °2k (k0 = @ 4] [2.22]

¥ N and B are constant quantities having dimensions of frequency and
length, respectively. They may be considered as scale parameters
of the Viisali profile N(z).
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In the linear approximation, ay, represents the amplitude of
a traveling plane wave having wave number k and mode
number «. It is normalized to describe the wave slope ampli-
tude.

The equations of motion in terms of the ay, are

dk + 10tk = Y [Okt1-mGrajam + Oxa1-mGlnaian].

Im

(2.23]

The coefficients G are expressed in the Appendix as functions
of Fl.

3. Test wave model

To provide a simple model for preliminary study we introduce
the test wave system. Here a single (k,«) mode, identified as
the test wave, is permitted to interact with an ambient field
consisting of the remaining modes. However, the ambient
modes are not allowed to interact among themselves. Test wave
models are often employed for calculating relaxation rates in
transport theory, where standard approximation schemes in
statistical mechanics may be applied. Numerical integration
of the equations of motion can be used to evaluate the validity
of these approximation methods.

Our system consists of 2M + 1 waves formed in M triads. We
let k designate the test wave mode (k,«) and I,m designate
ambient wave pairs (1,3), (m,7), respectively. The appropriate
equations of motion are then

Test wave: dy + iwaar =3 [(3k_|_mcfma1am
2

m
+ 0 k+l-—mGlr<n£al*am I

Background: d; + iwga; = 01— kem2G bk
+ O1ktmGimakay, + Orrk-mGRaiam. [3.1]

It is easily verified that Egs. 3.1 admit M + 1 conservation laws
(see ref. 10).

In our computations, initial conditions for the ambient modes
are chosen from a Gaussian distribution for the action-ampli-
tudes. The initial wave phases are chosen from a distribution
uniform in —7,7. Averages over ambient initial conditions will
be denoted (). The mean square action amplitude, oy, is re-
lated to the power density spectrum for the vertical displace-
ment

(@) = 5 Sdhy o 3:2]

2
<|aka|2> = Oka = 2k2 (%) \b(k,[){) [3'3]

The specific Y(k,«) for this study was the Garrett-Munk “75+"
spectrum (11), an experimentally derived spectrum for internal
waves that appears to be an equilibrium spectrum for the
ocean.

4. Numerical methods and results

Our emphasis in this section will be on computational tech-
niques and qualitative features of solutions. Detailed applica-
tion to the ocean will be published separately.

For an ocean with square area Z, the wave numbers form
a grid with spacing

27
V2

Because the test-wave wave number k is fixed (given), the wave
number conservation equations, k = m + 1, imply that a single
grid can act as coordinate system. For example, choosing the

Ak, = Ak, = [4.1]
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FIG. 1. Mean test wave action as a function of time with 91 triads
on 15 resonance curves and coupling coefficients for the deep ocean.
a = 4, w, = 7f, and the mean is taken over I = 100 initial condi-
tions.

x axis along k, each point (m,,m,) defines a triad. The most
important triads for energy transfer are expected to be those
for which the “resonance conditions” A = w, F wg — w, >~ 0
hold. For a given set of modenumbers «, 3,y and a given reso-
nance mismatch A, each resonance condition defines a curve
in the my,m, plane. Our procedure will be to include those
triads that lie on grid points for which | A| < Ayax. For a given
computation the parameters Ak and A, must be obtained
empirically. Before discussing this further we present a sample
computation of the full system of equations to illustrate the
general character of the solution.

Fig. 1 displays a typical example of the mean test wave action
for the ocean internal wave system. The frequency and mode-
number ‘of the test wave are w, = 7f and « = 4, respectively.
We include the first nine WKB (Wentzel-Kramers-Brillouin)
vertical modes of the ambient spectrum. This corresponds to
including 15 resonance curves in the calculation. The magni-
tude of the initial test wave action-amplitude is chosen to be 0.1
V01 and the corresponding initial phase is fixed arbitrarily.
The ambient initial conditions are picked from the prescribed
distribution with a random number generator. The test wave
action is averaged over I = 100 ambient realizations, integrating
Egs. 3.1 tot = 1000/N for each. The entire computation re-
quired approximately 7 min central processer time on a CDC
7600 computer. The salient features of Fig. 1 are a rapid rise
of the test wave action by a factor of 100 in the first 20 time
units, followed by small oscillations about a value slightly larger
than its expected (Garrett-Munk) equilibrium value (indicated
by the dashed horizontal line). We have found that these fluc-
tuations decrease with increasing I, and that the mean value
is constant upon variation of the initial test wave amplitude,
providing this amplitude is small (<0.25V oy,)-

The effect of choosing different values of Ak and Ap,,y is best
illustrated by a simple model calculation. For the remainder
of this section we keep only those interactions in Egs. 3.1 with
k =1+ m and arbitrarily set the coupling coefficients to G},
= G = Gl = G = Y (= 1 + 1), ignoring the complicated
wave number and frequency dependence of the real ocean.

To investigate the effect of off-resonant triads, we consider
25 triads, 13 with A = 0 and 12 with A = A,,,,. Fig. 2 presents
the short-time behavior of the mean action for various Ay.
For the dotted curves the phases of the ambient modes at t =
0 are chosen so that the initial growth rate of the test wave action
is maximal (the sum of the phases of the background waves in
Egs. 3.1 plus the phase of G is zero). It is known that this set of
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FIG. 2. Mean test wave action for the two-row model. The am-
bient initial phases are fixed to give maximal initial growth rates for
the upper four curves and chosen randomly for the dashed curves. The
KBM curve is given by the random phase approximation.

initial conditions results in “square wave” phase oscillations and
maximum coupling of the interacting waves (12). These co-
herent solutions show that the effect of off-resonant triads is to
produce oscillations about the growth rates of the resonant
triads. For t << 1/A ., the growth rate is essentially given by
the Ay = 0 curve. For later times the action oscillates about
the Ayax = © curve (where in effect only 13 resonant triads are
kept, all with A = 0). The frequency of these oscillations de-
pends linearly on A,y

For the dashed curves in Fig. 2 the initial phases are chosen
randomly. From Egs. 3.1 we see that the initial growth rate of
the mean action is zero. For later times, the growth rate (cal-
culated as an average over 100 ambient initial conditions) is
about half of the maximal rate. As Ay is increased, the growth
rate decreases as before, but now the oscillations are washed out
by the phase averages. The ambient phases do not, however,
remain completely random for ¢ > 0 because the random phase
approximation with the KBM perturbation method (13) yields
the lowest curve in Fig. 2. The KBM and maximal rates rep-
resent extremes, the first implying complete incoherence while
the latter implies complete coherence.

As a final model, more closely related to the full ocean cal-
culation, we include only triads on a single resonance curve,
again setting the Gs equal. With this model we can discuss the
effect of both Ak and A, on the growth rate. As predicted by
a Langevin description, we tentatively assume that the test wave
relaxes exponentially to equilibrium. To provide a rough esti-
mate for the growth rate, v, we calculate the time, ¢ /5, required
for the test wave to grow to half of its equilibrium value. Then
v = —log 2/t,/. The exponential relaxation assumption is
clearly not valid for very short times when (|ak.|2) grows as
t2 (because the ambient phases are initially random). For longer
times the oscillations caused by nonresonant triads must also
provide an error in the fit. However for the purpose of inves-
tigating the effects of changing Ak and Ap,,x our measure is
sufficient.
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F1G. 3. Growth rate, v, as a function of Ay,x and Ak for the single
resonance curve model.

In Fig. 3 we plot v as a function of Ap, for various values of
Ak. These curves approach v =~ 0.02 Ng for A 2 0.1 Ngin-
dependently of Ak. Because varying Ak changes the number
of triads within a given resonance width, we see that keeping
a small number of triads is sufficient to obtain a good estimate
of v. For example, the value of v for A5, = 0.1 and Ak = 0.27
(14 triads) differs by only 15% from that with Ak = 0.10 (93
triads). Varying the initial action between 10~ o, and 0.050y,
does not significantly change the growth rate. Further increase
of the initial action changes the growth rates drastically, indi-
cating that the exponential assumption breaks down.

Because Ap,x and v define the only available time scales,
these quantities can be expected to scale together and produce
reliable results if A,y is chosen self-consistently to be “a few
times ».”

Finally, in Fig. 4 we see that the time required for the test

0.08 L 0.80
0.044 L0.40
[e]
X
o
2
3
X
=
0.021 L0.20
0.011 L0.10
0 200 400
t (1/N,)

F1G. 4. Mean test wave action for the single resonance model. For
t < 100/Ng the Apax = 0.20 solution grows faster than the Ay = 0.03
solution. For longer times (right scale and right curves) evolution is
at similar rates.
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wave action to reach equilibrium does not depend strongly on
A nax. Although initially the two curves grow at quite different
rates [V(Apax = 0.03 Ng) = 1.5 (A pax = 0.2 No)], for later times
the curves grow at similar rates and reach their equilibrium
values at comparable times.

Appendix

The coupling coefficients that appear in Egs. 2.19 and 2.23 of
the main text are defined explicitly by the following set of
equations:

FZ = pO(Szwawﬁw'yekaelﬁemy )—I/Q[Q(k;l’m)
+ 9(I;m,k) + $(m;k,1)]/3, [A.1]
f

k
9lhbm) = (@ = &) X m - = (%ﬂ—k—;’l%a-m))

+ilw? - f2) [(*—‘léﬁ + ‘;1——""’;) (- m)

+ —Lkim ((l-k)(k-m)+(l><m)2 £ ) [A.2]

k22m? WaW.y,

Ti(kwylwgm,w,) = 8s(k,we—1,—wg,—m,~w,),
[A.3]

1 0 ,
l"'llcm =— f dz o WkquBWmv’
Po J—H

1 0 , P
Vim == [ s p Wi WiW i, (]
pPo J—H
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2 m
MBI/ZNO Ti(msk]). [A.5]
Wk

m

Gk —_i,k_

1 A/ 29898100 gron P k). (A
2Im Walka
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