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The autocorrelation function of a pseudointegrable system is considered. The system consists of “‘billiards™ on a plane
surface formed out of three squares arranged in an “L” shape. This system has the important property of being
constructed from copies of an integrable subsystem, the single square. The motion can be decomposed into a continuous
and a discrete part, the unpredictability in the system being associated with the latter. A discrete autocorrelation function
is calculated, and its decay properties investigated. Structure found in this autocorrelation function is associated with the
continued fraction expansion of the ratio of velocity components. For repeating continued fractions, such as the golden
mean, the autocorrelation function exhibits a selfsimilar structure. For the general case of a randomly chosen velocity
ratio, we derive the time dependence of the number of occurrences of “large” autocorrelation values, which differs from

the behavior in integrable and chaotic systems.

1. Introduction

Zemlyakov and Katok [1], Casati and Ford
[2}, and Richens and Berry (RB, [3]) have drawn
attention to a special class of N-degree of
freedom dynamical systems. Following RB, we
refer to these systems as ‘“‘pseudointegrable.”
They have properties commonly associated with
both integrable and nonintegrable systems, as
well as special properties of their own.

Pseudointegrable systems possess N con-
stants of the motion which restrict the dynamics
to lie on an N -dimensional invariant manifold of
the 2N -dimensional phase space (cf. integrable
systems), however, the topology of the manifold
is different from a torus. This is possible (in
view of a topological theorem due to Arnol’d
[4]) because of the existence of singular points
of the phase flow which lie on multiply-handled
spheres. RB suggest that no generalization of
action-angle variables can be defined for pseu-
dointegrable systems because of the “splitting”
of beams of trajectories near the singular points.
If a trajectory were to encounter a singular
point there would be no unique continuation of

the trajectory. If such a point is isolated on the
N-dimensional manifold (or, more generally, if
the point lies on a codimension =2 invariant
subset of phase space) the probability of a ran-
domly chosen trajectory ever intersecting it is
Zero.

The pseudointegrable system we investigate is
described in section 2 (see RB for other such
systems). It constitutes a problem in “billiard”
dynamics, the singular points of the phase flow
arising from the possible encounters of the bil-
liard ball with an interior 270° corner. Pseu-
dointegrable systems, however, are not restric-
ted to collision dynamics: Motion along
geodesics of a cone (with some means of return)
is an example. Here the apex of the cone pro-
vides the singular point of the flow.

Beam splitting has often been used to dis-
tinguish integrable from chaotic behavior: Most
nearby trajectories of integrable systems
separate no faster than linearly at long times. In
chaotic systems, however, nearby trajectories
separate exponentially with time. Pseudointe-
grable systems have an intermediate behavior:
Separation of adjacent trajectories is linear, d ~
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kt, until such time as a singular point divides
them., After this time, the trajectories move to
distant points in phase space (so their separation
is comparable to the diameter D of phase
space). The number of encounters (approaches
to within some small distance R) of the beam
with the singularity grows linearly, n ~ ki, so
that the probability that the singularity has
divided any pair of trajectories is

nd _ kik,
R

The expected value of the separation is simply
D times this probability, which grows like t°.
(See also discussion in Hobson [5]).

The faster than linear separation implies a
degree of unpredictability in one’s ability to
correlate trajectory pairs over long times. In the
particular type of pseudointegrable system we
will consider, this unpredictability is of a simple
kind. Qur system is constructed by tesselation
of integrable subsystems. In particular, we con-
sider billiards on a plane surface formed out of
three squares arranged in an “L” shape (see fig.
1). The phase point of the pseudointegrable
system is uniquely specified by the phase space
point of the associated integrable system
together with an integer j between 1 and N..
Phase space may be thought of as N, copies of
the integrable system. Motion within each copy
is according to the integrable laws of motion,
with rules for transitions between equivalent
points of different copies. The singularity is due
to a discontinuity in the transition rule. The
unpredictability of the system is due to the
(discrete) unpredictability of the integer label-
ling the copy. Numerical integration of such a
pseudointegrable system is straightforward. We
explicitly integrate the integrable system, and, in
terms of this solution, apply the transition rules.
This is a discrete problem and is not plagued
with roundoff errors as are most calculations of
nonintegrable systems.

In this paper, we present a numerical in-

vestigation of the classical autocorrelation
function of a pseudointegrable system. The
behavior of autocorrelation functions of generic
integrable Hamiltonian systems is known: Cas-
ati, Valz-Gris, and Guarneri [6] have shown that
the microcanonical autocorrelation function of
any smooth phase space function will decay to
its final value as 1" where N is the number
of degrees of freedom. Casati et al. point out
that “typical” behavior of correlation functions
of nonintegrable systems is unknown, and it
may prove to be the case that no typical
behavior exists. In the work to be reported here,
no attempt is made to average over initial con-
ditions.

In section 3 it is shown that the autocor-
relation function of position x(t) can be
decomposed into two parts. The first of these is
periodic and fully determined. The second is a
convolution between a known function and a
discrete autocorrelation function, Ap(r), whose
properties we would like to understand.

Specification of the dimensionless ratio of
velocity components, |v,/v,|, is sufficient to
determine the dynamics. Section 4 is a presen-
tation of a numerical calculation of Ap(r) for
the case when the velocity ratio equals the
golden mean (V5 + 1D/2. A self-similar pattern is
found whose details depend on understanding
the behavior of the system for rational values of
ERENE

In section 5 we consider the periodic orbits of
the pseudointegrable system. These are
obtained for the initial conditions |v,/v,| = p/q,
with p and g relatively prime. If the orbit were
restricted to a single square, a time scale could
be defined such that the period would be p. For
the 3-square pseudointegrable system, the orbit
may have period p, 2p, or 3p depending on the
parity of p and q. The prescription for which of
these is appropriate is given. The behavior of
the discrete autocorrelation function for the
case of periodic motion is described.

Section 6 deals with the case of irrafional
velocity ratios. On the basis of some computer
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calculations of the autocorrelation function,
certain patterns emerge from the results. These
can be understood using two elementary prin-
ciples. The first of these relates the behavior of
Ap(7) for irrational |vfv,| to the behavior for
certain rational approximations to |vfv,|. It is
the continued fraction expansion of the velocity
ratio that provides the relevant rational ap-
proximations. The second principle relates cor-
relations at two time differences 1,, and 7,, say,
to induced correlations at 7=7,%7, This
second principle is evidenced by a bound that
can be demonstrated for the 3-square system.
When the orbit decorrelation, Ap(0)— Ap(7), is
small, an analytic estimate of Ap(r) is possible.

We close the paper with a prediction in sec-
tion 7 of the behavior of the autocorrelation
function for a randomly chosen, i.e., typical,
initial condition. The predicted behavior con-
trasts with the behavior associated with in-
tegrable and with chaotic systems.

2. System description

We consider a particularly simple pseudoin-
tegrable system, one of a class described in [3],
“billiards” on a table made out of three con-
gruent squares as shown in fig. 1. The particle
travels in a straight line with constant speed in
the interior of the table and undergoes specular
reflection off the sides. A segment of a typical
trajectory is shown in the figure. Phase space
consists of the position on the table and the
values of v, and v,. The conserved quantities are
v2 and v§ (where the axes are parallel to the
sides of the squares). Thus the accessible phase
space is two dimensional and consists of four
copies of the table, one for each choice of the
pair of signs of v, and v,. These four copies can
be arranged by reflection and joined in such a
way that the velocity is always upward toward
the right, and the trajectory moves in a con-
tinuous straight line across the joints between
the copies. Fig. 2 shows this arrangement, in-

— X

Fig. 1. The three-square billiard. A particle bounces specu-
larly off the walls. A portion of a trajectory is labelled to
facilitate comparison with subsequent figures. We are con-
sidering the autocorrelation function for the coordinate “x”
whose direction is shown.
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Fig. 2. The invariant manifold consisting of twelve squares,
formed by joining four copies of the 3-squares, one for each
sign combination of v,, v,. The trajectory shown is the same
as that of fig. 1, as are the points a, b, ..., ].

cluding the same segment of trajectory shown in
fig. 1.

The phase trajectory is a straight line on the
space made by identifying appropriate sides.
The side AA’ is identified with A”A"™, the side
AA” with the side A’A”, BB’ with B"B", and
BB” with B'B". Identifying the A sides leads to
a torus with a square hole, and joining the B
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sides puts a handle on that torus, leading to a
genus 2 surface. The point B=B'=B"=B" is
the singular point at which an emerging tra-
jectory can leave in two ways. Thus if a tra-
jectory intersects BB” an infinitestimal distance
above B” it emerges near B", but if it intersects
B”"B" infinitesimally to the right of B” it emer-
ges near B. If fig. 2 is folded along all lines, the
twelve squares lie on top of one another, and
the motion on the single square is simply the
integrable case of billiards in a square. We in-
tegrate the equations of motion for the pseu-
dointegrable system by using the trivial solution
for billiards in a single square and by following
the sequence of squares that are occupied.

3. The discrete autocorrelation function

Let x(t) denote the distance measured parallel
to the top and bottom sides of the squares. The
autocorrelation function of x(t) is

T
Ar) = (x(Dx(t + 7)) = lim% j x(Ox(t + 1) dt. (1)
To
0

If the system were comprised of a single square,
x(t) would be periodic, and therefore A(r)
would be periodic with the same period. We
choose this period to define the unit of time. By
selecting a single angle variable x(t) as phase
space function, unnecessary detail caused by
multiple periodicity of the autocorrelation func-
tion is avoided, and we can concentrate on
features of the autocorrelation function that are
due to the pseudointegrability of the system.

Fig. 3a shows x(t) for the trajectory drawn in
figs. 1 and 2. It is clear that x(t) is the con-
volution between the triangle function

_f1-2|x| for|x
T()= { 0 for |x

|<:
= @

and a set of delta functions
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Fig. 3. a) x(t) for the trajectory shown in figs. 1 and 2, with
points a, b,...,j from these figures. x(t) consists of a
sequence of congruent triangles. b) The deconvolution D' of
the same x(t) and a single triangle, x = D'«T. The
coefficients d, and positions of the delta functions compris-
ing D' are shown, relative to the solid horizontal axis. The
quantities d, = d ' +1 are shown relative to the dashed line.
The mean {d,) is zero.

D'(t) = d;8(t —n). 3

The weights d, have magnitude equal to the
length of a side of a square, which we normalize
to be 3/2 for convenience, and the spacing be-
tween the delta functions is one unit of time
(defined above). D'(t) is represented in fig. 3b,
where the weight of each delta function is given
by the displacement from the solid horizontal
axis. The displacement is positive for a collision
with the upper right wall, and negative for a
collision with a left wall.

As is usually the case, it is most convenient to
remove the mean from the function whose cor-
relation is being calculated. Define

d, = d,— (D", @
D)= d.8(t —n),
and

R(t)=(D)Z (8(t—n)-1).
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Then
x(t)—{(x)=D*T+R=*T. (5)

The autocorrelation function of x(t)—(x) is
therefore the sum of the autocorrelations of two
functions with zero mean. Consider first the
autocorrelation of R*T. For a single square of
side 3/2, x(t) — {x) is the convolution of

i (8(t—n)—1)

with T. Therefore R+ T is 2/3(D’) times x(t)—
(x) for a single square, and its autocorrelation
function is

4<DI)2

AR *T = —_Q_ASingle Square* (6)

For the 3-square system, (D) = —3, and

1
AR:T = §ASingle Square-

We call Ag,r the “deterministic”’ part of A
since it has a correspondence with integrable
motion. It is a periodic function of v with a
period of one time unit. Specifically,

1 1\’ 1
AR,T=‘2_4(16(T—Z) _3<T—z)), for OSTS%,
)

and is symmetric about = 0 and about 7 = 1.
Now consider the autocorrelation of D* T,

ADtT = AD*AT- (8)
The function Ar(7) is found to be

§=2eP+ 201, for o] <}
Ar(r)=1{ ¥1-|7® for ;<|7| <1, &)

0 forl<n,

which is almost indistinguishable from a Gaus-

sian of the same area and width. Ap(T) consists
of a set of delta functions at integer values of 7,
where the weight of each delta function is the
value of the discrete time series made up of the
weights of the delta functions in D(t). In other §
words,

D(t) = 3, d,8(t — n),

and
o1&
Aol ==l S dud L
Hence
Ap.r(r) = EAD(m)AT(T —m). (1

Since Ar(r) has support on |7| <1, exactly two
terms contribute at each value of 7, except for
integer values, at which only one term con-
tributes.

The decomposition of the autocorrelation
function of x(t)—{x) into a periodic deter-
ministic part and a part which takes on values at
discrete time intervals is made possible by the
reduction of the system into integrable and dis-
crete subsystems. We believe that the periodic
part would not be present for a more general
pseudointegrable system but would be replaced
by a decaying contribution. Whatever is the
case, Ap.r is more likely to exhibit generic
structure and will be the subject of the in-
vestigations in this paper. Since the convolution
of Ap with A; contains no physics, we will
ignore this convolution and concentrate on
properties of the discrete autocorrelation func-
tion Ap(t). Aside from a factor of 3, this func-
tion has the same value as Ap.7(7) at integer
values of 7.

Most* trajectories will fill all three squares of

*With the exception of a set of initial conditions of zero
Liouville measure.
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the system uniformly. Therefore d, = —2 twice
as often as d, = +3, and (D') = —3. It follows that
d, takes on the values —1 and 2 and that (D) =
0. D(t) is represented in fig. 3b, where the
weights are given by the displacements from the
dashed horizontal axis. Without recourse to
numerical experiments it is difficult to be
specific as to the values of Ap(r) for given 7.
However, the value Ap(0) is easily calculated to
be

Ap(0) =32 +5(-1)=2. (12)
It is normalized at twice the conventional value
of unity. For most* trajectories we can also
evaluate Ap(1), based on the observation that if
d, =2 then d,.,=—1, since the trajectory can
not remain in the upper right square for more
than one time unit. In order for d, = —1 to occur
twice as often as d, = +2 (to give (D) =0), the
transitions d, =-1, d,.,1=2; d,. =2, d,;,,=—1;
and d, = —1, d,,, = —1 must all occur with equal
frequency. Thus

Ap(1) =3(=2) +3(-)+3(1) = —-1. (13)
Ap(0)=2 and Ap(l)= -1 represent an upper
and lower bound to Ap(7) for any 7 (see ap-
pendix).

4. Self-similar autocorrelation function

Our first numerical experiments were per-
formed using an Apple™ personal computer, a
system with superior graphics capabilities. In
this section the results of one of these early
experiments are summarized.

The parameter that determines the dynamics,
and also therefore the autocorrelation function,
is the ratio of velocity components, |v,/v,,
which is a constant. The first numerical runs
were for |v,/v,| = (V5 + 1)/2, the “golden mean.”
A plot of the discrete autocorrelation function
Ap(7) at the first 2000 time values is shown in
fig. 4. Although there are hints of structure, the
details are unclear. However, the repeated ap-
plication of a simple smoothing algorithm

Ap(r): = Zl(lAD(T = 1|+ 2|Ap(7)| +|Ap(r + D]
(14)

results in fig. 5, obtained after twenty iterations.
A self-similar pattern is evident: Each peak,
centered at =21, 89, 377, 1597, is half the
height of the peak at + = 0. The smaller peaks at
r=89+21; 37721, 377+89; 1597 £377, etc.,
are again half the size of the parent. The next
generation (e.g., 1597 =377 +21) is half these.
By examining the original (unsmoothed) data we

2.0

AD(T)

-2.0
0 500

1000

T

1500 2000

Fig. 4. The discrete autocorrelation function Ap(7) for 0 < 7 =< 2000, shown for |v,/vy| = golden mean. The structure of Ap is not

very apparent in this presentation.
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Fig. 5. The function S(r) obtained from {Ap(r)| by binomial smoothing. There is self-similar structure manifested by
Ap((V3+2)7) = Ap(r), and by Ap(a. + 7) = 3Ap(7) for T < a, where a, = 3+ 3/2V3) (V5+2)".

0 500

0 2118

Fig. 6. Demonstration of the self-similarity Ap((V53 + 2)1) =
Ap(7). The smoothed data, S(0 to 500), has been displaced
upward by 0.11 to separate from S(0 to 2118). The latter is
compressed by (V35 +2). Note the alignment and heights of
peaks in the two sets of data.

find the same phenomena at scales 1 and 5 as
well as at 21, 89, etc.

The ratio of these scales is approximately
V5+2 (an asymptotic result, see section 6). To
dramatize the self-similarity, fig. 6 shows the
result of superimposing the first 500 data points
of fig. 5 with the first 2118 points of the same
figure but with the abscissa reduced by the scale
factor V'5+2. The self-similarity is remarkably
good even at these small time values!

The problem is to explain the structure we
have found and be able to predict the cor-
responding structure for other values of the
velocity ratio. It will turn out that the explana-
tion rests on our understanding the behavior of
the system for rational values of |v,/v,|. It may
amuse the reader that the significance of the
numbers 1, 5, 21, 89, 377, 1597,...is not that
they are every third member of the Fibonacci
sequence, but rather that they are the average of
twice each of the two preceeding Fibonacci
numbers!

5. Rational |v,/v,|
Let us consider initial conditions such that
lvdv,| = plq, (15)

where p and q are relatively prime. If the
motion were restricted to a single square, the
trajectory would be periodic after p bounces off
the left and right walls and g bounces off the
top and bottom. In terms of the time unit
defined in section 3, the orbit would have period
p. For motion within the 3-square system there
is more than one possibility: After a time p the
trajectory can return to its starting position, or it
can reach one of the two equivalent positions in
the other two squares (equivalent under
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reflection through the square boundaries). If we
call the three equivalent positions a, b, and c,
there are three possible groups of mappings
after the time p:

G, a-»b->c—a,
G, a-»b-oa;c—c, (16)

G, a-a;b->b;c—>c.

The parity of p and q determines which of these
groups is realized by the motion. It can be
shown, [7], that if both p and q are odd integers,
case G, applies; if either p or g is even, case G,
applies; case G; never occurs. The cases G, and
G, are illustrated in fig. 7 for the vleocity ratios
|v/v,| =1 and 1, respectively.

In case G, (p and q both odd) the trajectory
(and autocorrelation function) is periodic with
period 3p. The sequence...d;—y, dj—,, dj, dj+p,
d;+2p, ... has the pattern...~1, —1, 2, -1, —1,
2,...s0 that the discrete autocorrelation func-
tionat r =40, p, 2p,...is 2, -1, —1, 2, —1, etc.

In case G, (p or q is even) the period of the
trajectory can be p or 2p. If initial conditions
are chosen at three equivalent points (such as a,
b, ¢ in fig. 7), two lie on the same trajectory
with period 2p while the third lies on a tra-
jectory with period p. We define a parameter €
by

N1=p(%—e>, N2=p(§+e>, a7

where N, and N, are the number of times that
the trajectory with period p, 2p, respectively,
hits the upper right wall. This parameter
measures the deviation from expected linear
dependence of the number of hits with the
length of trajectory. It has the same value for all
trajectories with the same value of |v,/v,|. Using
eq. (17), the values of the discrete autocor-
relation function for time differences that are
integer multiples of p can easily be evaluated.
The results are shown in table I. We also show
in this table the weighted average of the auto-

Fig. 7. The two types of periodic trajectories depending on
the parities of p and q, where |v./v,] = p/q. Trajectories in
the 3-squares and in a single square are shown. Three
equivalent points (a, b, ¢) under the mapping to the single
square are shown. In the p/q = 3/1 = odd/odd case, a single
trajectory passes through all three equivalent points. In the
p/lq=2/1=even/odd case, there is a trajectory (dashed)
which passes through two equivalent points and another
(solid) which passes through the remaining point.

TABLE 1
The discrete autocorrelation function Ap(r) for periodic
orbits, |vJvy| = p/q. For p, q =odd, even or even, odd, the
average weighted by the length of the trajectory is also
given. The period p trajectory hits the right side of the
upper right square G —€)p times in a period

p.q Ap(p) Ap(2p)  Ap(3p)
0dd, odd -1.00 -1.00 2.00
i 20-3 2.0-3 20-3
0dd, even perfod p € 3 € €
Even. odd period 2p_ ~-1.0-3¢ 2.0+3¢ -1.0-3¢
’ average, Ap —3e 2.0 -3¢

correlation function, where the weights are the
trajectory lengths (i.e., 5 for the period 2p tra-
jectory and 3 for the period p trajectory). This
weighted average has applications to the irra-
tional orbit case.
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6. Numerical experiments for irrational |v,/v,|

For the case that the velocity ratio is irra-
tional, we have made a number of computer
calculations of the autocorrelation function.
Certain patterns can be seen in the results which
can be understood on the basis of two prin-
ciples:

P1) If |v/v,| is sufficiently close to some
rational number, the autocorrelation function
closely resembles that for the rational case
when the time difference is not too large.

P2) A correlation that exists for time
differences 7, T, say, will cause an induced
correlation at 7 =7, £ 1.

Part of the content of the second principle
can be expressed in terms of a bound:

Ap(r £ 1) = Ap(r) + Ap(1) — Ap(0), (18)

where Ap(0)=2. This bound is not true of
autocorrelation functions in general, but it is
proved for the 3-square system in the appendix.
A special case of the bound when iterated is

Ap(nt)=2—n(2~ Ap(1)). (19)

The rational approximations sufficiently good
for the first principle to apply occur among the
regular continued fraction approximations of the
velocity ratio. Following the description in [8],
the regular continued fraction expansion of the
velocity ratio |v/v,| = R is obtainea by iteration
of the relations

R=by+—, by=INT(R):
R,

R, =b,+=— b, =INT(R),n=1,23,....
Rn+1

(20)

After m iterations the result is the mth con-
vergent
S S
R = bo + 1
by+—m——
b, +...
2 oo + 1

which we will denote as

11" p
R=~bo+ [—] = Pm 2
0 bn n=1 Qm ( 2)

The fractions p,./q. are called principal con-
vergents, and these give the best ap-
proximations to R. The first principle works best
for the principal convergents. The fractions

(k)

pm pm—2+kpm—l

Po —Pma® BPmot - =1 2 . b, —1 23
m qm~2+kqm—l ( )

are called intermediate convergents. Their
numerators are precisely the time differences, 7,
for which the second principle applies.

To relate the behavior of the autocorrelation
function for irrational velocity ratios, we define
an integer v, to have the value », =2 if either
Pm O ., is even, and v, =3 if they are both
odd. Hence Ap(v,p.) would equal 2 if |v,/v,|
were exactly equal to p,./g. An analytic esti
mate of the ‘“decorrelation,” 2— Ap(r), is pos-
sible. This is obtained as the product of factors
which estimate the probability that the irrational
trajectory passes the singular point on the
opposite side to the rational trajectory. The
product is

2 Ao~ (3) b

(""‘p'"). 4)

:
v,| — o,
ol = ool

The first factor contains the decorrelation
caused by passing on the wrong side of the
singular point. The second factor is the number
of times the trajectory passes x = 0. The third
and fourth factors are proportional to the verti-
cal distance, 8y, that the irrational trajectory
drifts from the rational trajectory: The third
factor is the velocity mismatch, and the fourth
factor is proportional to time (the proportional-
ity factor has been included in the constant).
This expression is written more compactly as

— 4
Pm

Yy

o, . (29)

2
AD ~2- S(Vmpm)2




TaBLE II
Each p../qn is a continued fraction approximation to |v4/v,!. v» = 3 if both p, and gn,
are odd, and v, =2 otherwise. The agreement between Ap(mm)=2-— @137k
[loy/vx] — gm/Pm| and the numerical trajectory value is shown. The values include all
the largest Ap(r) (except Ap(0) =2) for T <3000

[v:/vy| DPm am Ym VmPm Predicted Actual
Ap(r= Vmpm) Ap(r)
™ _ - - 2 — 1.04
3 1 3 9 1.19 1.19
2 7 2 44 1.83 1.81
333 106 2 666  —0.49 -0.81
355 113 3 1,065 1.98 2.00
LT
1+ [n - 1] , — - — 2 — —0.09
n= 1 1 3 3 0.19 0.18
3 2 2 6 1.25 1.16
10 7 2 20 1.41 1.33
43 30 2 86 1.51 1.45
225 157 3 675 1.05 1.12
1,393 972 2 2,786 1.63 1.42
NST”) — - - 2 — 0.14
1 1 3 3 -0.29 -0.29
2 1 2 4 0.74 0.58
3 2 2 6 0.83 0.69
5 3 3 15 -071 —-0.50
8 5 2 16 0.81 0.66
13 8 2 26 0.81 0.65
21 13 3 63  —0.68 —0.49
34 21 2 68 0.81 0.66
55 34 2 110 0.81 0.65
89 55 3 267  —0.68 —0.49
144 89 2 288 0.81 0.65
233 144 2 466 0.81 0.68
377 233 3 1,131 -0.68 -0.45
610 377 2 1,220 0.81 0.60
987 610 2 1974 0.81 0.52
(\/82—”) — - - 2 — 0.78
2 1 2 4 1.08 0.99
5 2 2 10 1.05 0.95
12 5 2 24 1.06 0.96
29 12 2 58 1.06 0.95
70 29 2 140 1.06 0.96
169 70 2 338 1.06 0.96
408 169 2 816 1.06 0.94
985 408 2 1,970 1.06 0.90
(V13+3) _ . 5 _ 1.09
2 3 13 9 035 0.34
10 3 2 20 1.26 1.16
33 10 2 66 1.26 1.16
109 33 3 327 0.34 0.31
360 109 2 720 1.26 1.18
1,180 360 2 2378 1.26 1.45
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Table II shows a comparison of eq. (25) with
various numerical results we have obtained.
When the predicted Ap value is close to 2, the
agreement is excellent.

Fig. 8 illustrates an application of the prin-
ciples P1 and P2 to the initial condition |v,/v,| =
m. The autocorrelation function is large at 7 =9
and 7 =44 since these are v,p,., values cor-
responding to the principal convergents
PwlGm =3 and pn/a, =%. The first convergent
has p,. g, =o0dd, odd so that (see table I)
Ap(t = 3) is large negative. Also Ap(t=1)=—1
from eq. (13). Then principle P2 predicts Ap(r =
2) is large positive because 7 = 2 can be made as

0
2.
k

1.

AD(T)

-1.-

141 or 3—1; the large value is induced by the
large negative values.

The autocorrelation function can be large
negative. In fact we have found from our
numerical results that it takes on its largest
possible negative value, Ap = —1, at several 1
values. According to table I, we expect Ap = —1
at p, and 2p, values when p,, q. is odd, odd.
QOur experience is that A, = —1 at r = p,, often,
but rarely at 7 = 2p,,. Finally, Ap(7) will be large
negative when 7 = *71,* 1, where Ap(1)) is large
positive and Ap(ry) is large negative. The pat-
tern of Ap(t)= -1 values we find is such as to
maximize the number of such sum or difference

Fig. 8. Ap(r) for 0 < =< 44, shown for |v./v,] = 7. The heavy solid lines passing through =0, 2, 4 and 7 =0, 9, 18 represent the
lower bound, eq. (19), based on =2 and 9, respectively. The lines connecting successive integer values of 7 do not correctly
represent Ap(r) between these points. The symmetry Ap(44 — 1) = Ap(7), following from Ap(44) =~ A(0) is apparent.
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combinations which can give 7; the different
reasons for Ap =—1 mutually reinforce each
other.

An application of these wvarious rules to
|v/v,| = 7 is shown in fig. 9. There is a strong
tendency for bounds to be saturated.

The velocity ratio for which the convergents
of a continued fraction expansion represent the
poorest approximation is the golden mean,
logv,| = (V5+1)/2. If the considerations we
have developed based on comparison with
rational velocity ratios work for this value of
the velocity ratio, we can be confident they will
work for any other. Some of the properties of
the autocorrelation function were displayed in
section 4. In particular, there was seen to be a

self-similar structure at scales 1, 5, 21, 89,
377,...1t turns out that these correspond to 1
values where Ap(7)=—1. The continued frac-
tion convergents for (V5 + 1)/2 are the ratios of
adjacent Fibonacci numbers. It follows that the
VmPm are two or three times the Fibonacci
numbers. Table II shows that the p,,, g, = odd,
odd candidates have a negative Ap value, both
by the estimate and from the numerical com-
putation of the autocorrelation function. The
odd, even and even, odd candidates have a
moderate positive value of Ap, but all of these
are less than unity. Therefore the dominant
structure in the autocorrelation function is due
to the negative Ap values.

A convenient way of presenting the trends of

0.— 22 66 #0154 198 242 286 330 374 448 462\ 506 T

B

2
et

> V3

13 a7 91 135 179 2’2‘3 2’6‘7 311 355

Fig. 9. Ap(7) for 7=n.44, n44+22, and nd4+3 are shown for |v,/vy = m The solid lines are bounds: By, Ap<2; By,
Ap(n.44) = n.Ap(44) — (n — 1) Ap(0); B2, Ap = —1; B3, Ap(n.44 + 355) < Ap(335) + (2 — Ap(n.44)). The significance of the dashed line
for Ap(n.44+352) is simply to show that these values are colinear. The dashed line near Ap(n.44+22) is the prediction

Ap = —3e =0.091, based on table I.
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repeating large values of Ap(r) is to arrange the
values of 7 at which the autocorrelation func-
tion is large in a ‘‘tree” diagram. On the tree
“trunk” are the values 1 = v,,p,, for which Ap(7)
is large (principle P1). Tree ‘‘branches™ are
made out of sums and differences of trunk
values (principle P2), and “‘twigs” are made of
sums and differences of a branch and a trunk
value, etc.

For the initial condition |vJ/v,|=(V5+1)/2,
the trunk values occur at every third Fibonacci
number. Since the recurrence formula for the
Fibonacci number is

Fm-H = Fm + Fm—l, (26)

every third such number is both a p,, value in a
Pm» Gm = 0dd, odd pair and also the average of
two adjacent 2p,, positive trunk values. The first
explanation cannot be considered important
since the corresponding 7 =3p, value has a
negative autocorrelation. The second explana-
tion allows the reinforcement of reasons to
work; for example, 89=68+21=110—-21=
377 — 288 = 466 — 377. The tree is shown in fig.
10. The formula

Ap(Tixm) = é’%z%l)’ﬁz_) @n

works extremely well on the branches near the
trunk. It continues to work well for the twigs,
etc. (not shown). In fact, this golden mean
velocity ratio has the remarkable property that
Ap(7) is negative for all odd values of 7 and
positive for all even values. The self-similar
structure of figs. 4, 5, 6 and 10 is caused by the
induced correlation coming from the trunk. Two
adjacent Fibonacci numbers have the ap-
proximate (asymptotic) ratio (VS+1)/2.
Similarly, we have F,.s/F,~V5+2, a result
that is trivially obtained from eq. (26). It was
this ratio that was used in constructing fig. 6.
The self-similar nature of the autocorrelation
function is ultimately caused by the fact that the

2.00
|
1
-1.00
l
™
4 -1.00 6
0.58 , 0.69
21
{ 20 -1.00 22 ‘]
16 0.58 0.48 26
0.66 ‘ 0.65
89
| 88 -1.00 90
84 0.50 l 0.51 94
68 0.58 0.49 110
0.66 377 0.65

376 -1.00 378
372 0.50 | 0.50 382

356 0.51 0.5] 398
288 0.59 0.49 466
0.65 0.68

1597 B
1596 -1.001598 |

1592 0.50 0.50 1602
1576 0.50 ‘ 0.50 1618
1508 0.5¢0 0.47 1686
1220 0.57 0.47 1974
0.60 0.52

Fig. 10. The golden mean tree. Shown are both the integer r
values and the corresponding Ap(z). The t values on the
trunk are every third Fibonacci number, and the branch tips
are twice the remaining numbers.

continued fraction expansion consists of

repeating denominators;

©

V5+pnR=1+ H]m'

Other velocity ratios with this property are

(VB+2)2=2+ [%]:1

and

VB3+3)2=3+ [%];1

A
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etc. both of which are considered in detail in
ref. 7.

7. Summary, and Extension to Random |v./v,|

From the examples we worked out, including
those presented in section 6, we can abstract the
following behavior of the discrete autocor-
relation function, Ap(r), of our pseudointe-
grable system:

1) If, for each principal convergent, P/ qum, of
the continued fraction expansion of the velocity
ratio |v,/vy|, we define v, =2 when either p,, or
G. 1s even, and v,, =3 when both are odd, then
the quantity

PV |05/ Vx| = Qo P

will represent a good approximation to the
decorrelation, 2~ Ap(vnpPm), if it is small. In
such a case, we call 7= v,p, a positive trunk
value. (Sometimes it is necessary to include
7=2 as a positive trunk value if 1=3 is a
negative trunk value.) Ap(7) takes on its largest
values when 7 is a positive trunk value, is
somewhat smaller at branch values (defined as
sums or differences of trunk values), and is
smaller still at twig values (which are sums or
differences of branch and trunk values). The
bound, eq. (18), applies to this sequence.

2) Ap(r) takes on its largest negative values
(equal to —1) at 7 values we call negative trunk
values. These include 7 = 1; 7 = p,, when p,, and
q. are both odd; and 7 =2p,, when 1= 3p,, is
an extremely good positive trunk value. The
remaining negative trunk values are made out of
sums and differences of a negative with a posi-
tive trunk value. This usually results in negative
trunk values which are half of sums or
differences of adjacent negative trunk values,
although other possibilities, such as the n.44+3
sequence for |v,/v,| = m, can occur.

With this understanding, and with the ap-
plication of a standard result in the measure

theory of continued fractions [9], it is possible
to predict the nature of Ap(r) for a randomly
chosen |v,/v,|. Let us denote by r,, the ratio of
adjacent continued fraction numerators. That is,

Pm+y
m = 28
= (28)

The probability distribution of these ratios is [9],

dr,,

Plrn) = rn(rm+1)In2

(29)

We wish to calculate the distribution function
for ratios of positive trunk values. This requires
knowledge of the distribution of v,, values. The
value of v, is uncorrelated with any r,. Pairs,
(V1n, Vm+1), are similarly uncorrelated with any r,.
However, sequences of more than two v,
values are strongly correlated with r,. For
example, »,, is completely determined once v,,_,,
vm—2, and the integer part of r,_, are given. The
probability that v, =2 is %, and the probability
that v, = 3 is 3. Successive pairs, (Vm, Vm-1) Can-
not both equal 3. This information allows us to
deduce the required probability distribution: Let

Rm = Ym+1Pm+1 (30)

VmDPm

denote a ratio of adjacent trunk values. Then

P(Rn) =

dR,, ( 1 + 1 + 1 )
R,3In2\R,+1 3R, +1 iR, +1
(3D

is the probability distribution of these ratios.
Since R,, has a fixed distribution, the trunk
values increase in an approximately goemetric
way. In fact, for large m,

2

(VmPrm) exP(lZan) 3.28, (32)
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where

2
™
= f In(R,)P(R,)~ 1.19. (33)

For large 7, the number of trunk candidates with
VP < T 18

N. =T1191n<1) (34)

To

where 7, depends on the assumed distribution of
initial conditions.

A trunk candidate becomes a trunk value
when its associated value of the discrete auto-
correlation function is “large.” The number of
trunk values must depend on the definition of
“large.” An autocorrelation function will be
called large if Ap>2-q, for some suitable q,
which we assume is small. An estimate of the
distribution of autocorrelation values of trunk
candidates close to Ap =2 can be obtained by
using eq. (25), which we rewrite as (see ref. 8).

2, 2( 1 1 )
2—Ap=ZVnDm - +...
° 3v P PmPm+1  Pm+1DPm+2
2 2 Pm ( pm)
L. , 35
3” pm+l apm+1 ( )

with0 < a < 1.If2— Apissmall, then p,/pm.1 <€1;
therefore

2-ADz§u2m Pm__ 2Vm (36)

Hence, the probability that A, > 2 — a, given v,
is

3a

Paov, = ZJ' P(r)dr, = m‘z‘ 37
2vpi3a

Averaging over v,, =2 or 3 gives (1/v%) = 11/54;
therefore

_ 1la
P T 36In2

(38)
The actual number of trunk values less than 7 is
therefore

N =N, = Q%ln(l). (39)
37 To

The number of branch values less than 7 for
which Ap >2—a is estimated by assuming the
bound, eq. (18), is saturated. One obtains

2
IN? f d@aldg’az=2N§%=N2. (40)
atay<sa
The number of twig values is 2N’/3, and in
general, the number of nth generation tree
values with large Ap is

2n—1
n!

N".

Their sum is the total number of large autocor-
relation values,
T 22a/3n2
N =lexp(2N) = %(T—> . @1)
]
Thus, the number of large autocorrelation
values goes as a power of 7, where the power is
proportional to the cutoff in 2 — Ap. If we take,
for example, a =1, where the ‘“small a” ap-
proximations are not very good, eq. (41) gives

N« 7%, 42)

We conjecture a general form for the 3-square
pseudointegrable system,

-NPseudo &« Tf(a), (43)
with the function f(a) a monotonically rising,

continuous function which satisfies f(0)=0,
f'(0) = (22/37?), and f(2) = 1. This contrasts with
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the behavior of integrable systems, for which
the autocorrelation is an almost periodic func-
tion of 7, and

Jvlmeg. « f(a)T- 44)

It also contrasts with the extreme situation of a
system for which the autocorrelation function
decays exponentially, and

KN chaotic < f(a). 45)
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Appendix
The bounds on Ap(7) and Ap(t = 1)

A simple exercise in linear programming gives
the desired results. Consider the function d(t), eq.
(4). Allowed values are d(t) =2 and d(t)=—1.
Let us denote by f;, the fraction of d values
which equal i; f;(7) the fraction such that d(t) =
j and d(t+7)=1i; ful(r, 7)) the fraction such
that d(t)=k, d(t+r)=j, and d(t + 11 7)) =i

There are four fractions f; but they are con-
strained to satisfy

$fij(7) = fi;

} ij=-1lor2, (A1)
Zfii(‘f) = fj,
where

Three of these four constraints are independent,
which means that each f;(7), and therefore the
autocorrelation function depends on a single
variable, z(1):

fa=t for=fu=432

faa=U32,

and

Ap(r) = Eu: ijf; =32(r) - L. (A2)

Each fractionis non-negative, therefore 0 <z < 1.
Ap therefore satisfies the bounds

—1=<Ap(r)=2. (A.3)

Similarly, there are eight fractions f with
eight constraints:

Efiik(“'z, ™) = fi(my)s
;fiik(TZs )= fii(Tz),

i,j,)k=-1or2, (A4

of which six are independent. Therefore, for
fixed Ap(m) and Ap(7), fix depends linearly on
two variables. The fractions which determine
the autocorrelation function of interest are

falmi £ 1) = 2 fipe(72, 7). (A.5)
1

We wish to find bounds on

Ap(m 1) = 2 ikfu(Ti % 7). (A.6)

Each one of the eight f;’s is non-negative,
which restricts the allowed region of the two
parameters to the interior of a polygon. Each
extremum occurs at a corner of the polygon,
where two of the f;’s are zero. There are two
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possibilities: The first is Ap(7)) + Ap(12) =1, for
which the bound we are trying to establish is
trivial since the bound Ap(r,x7)=-1 is at
least as strong. If Ap(7)+ Ap(m) <1, the two
fractions that vanish at the minimum are f,_|;
and f_,,. This makes sense since these two
fractions contribute positively to Ap(t, = 7,), but
negatively to both Ap(r)) and Ap(r,). Setting the
two fractions equal to zero yields Ap(t,=7) =
Ap(1)+ Ap(1y) — 2. Therefore in general, when
the fractions are not necessarily zero, we have
the bound

AD(TI s Tz) = AD(TI) + AD(Tz) - 2. (A.7)
In a similar way, the upper bound is found to be

Ap(m £ 1) <2—|Ap(7) — Ap(m)). (A.8)

The two bounds are related. For example, if
Ap(r) < Ap(7)), one simply interchanges
TIST ET)
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