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Abstract. A new global optimization technique for designing stellarator coils has been developed and

applied to the design of coils for the National Compact Stellarator Experiment. Using this technique

coil sets were found with fewer coils and lower current densities than those obtained with traditional

methods. A new coil design procedure which uses a genetic algorithm as the core optimization method

is described and the resulting advanced coil designs presented.

1. Introduction

The National Compact Stellarator Experiment
(NCSX) has been proposed for investigation of
the physics of high beta, low aspect ratio, quasi-
axisymmetric (QA) stellarator plasmas. An NCSX
plasma can be regarded as a specific helical per-
turbation of an axisymmetric tokamak plasma. The
required perturbation is such that on each flux sur-
face the magnetic field strength, when expressed as a
function of magnetic (Boozer) co-ordinates, is inde-
pendent of toroidal angle. QA stellarators offer the
combined advantages of tokamak neoclassical con-
finement levels and stellarator stability.

The first stage of NCSX design requires iden-
tification of a baseline plasma configuration with
attractive physics properties. A three field period
QA equilibrium with an aspect ratio of 3.5 that is
stable to kink and ballooning modes at β = 4%
has been obtained [1] using a configuration opti-
mization procedure developed by Nührenberg and
Zille [2]. Fourier coefficients of the plasma bound-
ary shape were varied to minimize a target function
which expresses the desired physics properties of the
NCSX plasma. The target function includes values of

the rotational transform at the magnetic axis and the
plasma edge (global shear), a measure of the degree
of quasi-symmetry (goodness of transport), measures
of kink and ballooning stability, and boundary limits
describing geometric constraints such as aspect ratio,
maximum or minimum radius and maximum plasma
height. The VMEC [3] MHD equilibrium code com-
putes a new equilibrium for each boundary modifi-
cation, from which the optimizer target function can
be evaluated. When one or more attractive equilibria
have been identified the process of designing coils to
support the equilibria can begin.

In this article we will focus on a coil design for
a baseline equilibrium denoted C82. The last closed
flux surface of C82 is shown in Fig. 1. On this sur-
face the coil set must impose the condition that the
normal component of the total magnetic field must
vanish,

B · n̂ = 0 (1)

where

B = Bpl +Bext. (2)

Here n̂ =∇s/|∇s| is the unit normal to the plasma
bounding surface, s(x, y, z), Bpl is the magnetic field
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Figure 1. A three dimensional rendering of the C82

plasma boundary.

due to currents which flow in the plasma and Bext

is the magnetic field due to all external field coils.
There is a possibility for building the NCSX device
on the existing PBX platform and of making use of
the PBX toroidal and poloidal magnetic field coils.
It is convenient, therefore, to write Bext as the sum

Bext = Btok +Bstell (3)

where Btok is the (known) magnetic field from any
given tokamak coils, and Bstell is the magnetic
field from the stellarator coils whose design is being
sought.

Following the NESCOIL [4] procedure developed
by Merkel, Bstell can be produced by a surface cur-
rent j on a current winding surface (CWS) that
encloses the plasma. The surface current is diver-
gence free and can be written in terms of the surface
gradient ∇s of a current potential Φ(u, v),

j =∇s′ ×∇sΦ(u, v). (4)

Here s′(x, y, z) defines the shape of the CWS and u, v
are poloidal, toroidal angles on that surface. Once
the potential is determined [4], a set of coils can be
defined by selecting Nc appropriate contours of Φ
and interpreting each contour as a filamentary coil
carrying an amount of current that is proportional to
the change in potential midway between each chosen
contour and its two chosen neighbours. In the limit as
Nc →∞ the discrete coil system reproduces exactly
the magnetic field of the current sheet. For a practi-
cal coil system, however, we would like to choose an
efficient coil set with the following minimum set of
properties:
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Figure 2. A contour plot of the surface current poten-

tial for C82. Solid lines represent contours of positive

potential, short dashed lines represent contours of nega-

tive potential and long dashed lines represent contours of

zero potential.

Plasma boundary surface

Coil winding surface

Figure 3. Cross-sections of the plasma boundary and

the coil winding surface in the two toroidal planesNφ = 0

and π.

(a) The number of coils should be small.
(b) The reconstruction errors (measured by how

well Eq. (1) is satisfied) should be small.
(c) The maximum coil current should be small to

minimize resistive dissipation.

An optimization algorithm for choosing the ‘best’ set
of Nc contours is the primary topic of this article.

Figure 2 shows a contour plot of the NESCOIL
current potential for C82 on a CWS (Fig. 3) that
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is conformal with the plasma boundary, with each
point of the CWS a normal distance of 18 cm
from the plasma. In NCSX this normal separation
is determined by engineering constraints: it is the
smallest coil–plasma separation that allows room for
plasma facing components, vacuum vessel, etc., in
an R = 1.5 m device. As the separation distance
is increased, both the normal magnetic field error
at the plasma boundary and the current sheet den-
sity on the CWS increase. The simplest algorithm
for cutting coils from the current sheet is to choose
Nc contours equally spaced in Φ, with equal currents
in each of the coils. This, in fact, was the algorithm
used in the coil designs for Helias and ATF [4]. How-
ever, the NCSX plasma has a smaller aspect ratio
and is more highly shaped (owing to the require-
ments of quasi-symmetry and high beta stability),
and it becomes extremely beneficial to optimize the
coil selection procedure: the number of stellarator
coils and the maximum current required by the coils
can be significantly decreased.

Initially, an optimization code was written which
selected coil contours on the basis of minimizing a
weighted sum of the squares of the net normal com-
ponent of the magnetic field at the plasma bound-
ary (which, ideally, should vanish) and the maximum
current in the selected coils. A Levenberg–Marquardt
algorithm [5] was used as the minimization pro-
cedure. Modest improvements in coil design were
obtained when compared with the simple equipoten-
tial spacing algorithm (smaller Bnor fitting errors
and 10–20% smaller maximum coil currents for a
fixed number of coils). However, it became clear
that the final Levenberg–Marquardt solutions were
trapped in local minima of the minimizing tar-
get function and that considerable gains might be
achieved if a global minimization algorithm were
applied.

In the coil selection problem we are confronted
with the daunting combinatorial task of selecting a
relatively small number of potential contours (coils)
from a large pool of contours (the full current sheet)
and requiring that they reconstruct the plasma
boundary with sufficient accuracy to reproduce the
desired physics of the original equilibrium. A specific
example will demonstrate the enormity of the prob-
lem. In Fig. 2 there are 60 equally spaced contours
of the C82 current sheet. These produce 98 individ-
ual coils (some levels are multivalued, as can be seen
from the saddle region of the figure). If we seek a
coil design with only 10 coils per field period, then

all combinations of these 98 coils taken 10 at a time
— which leads to

98!
10!(98− 10)!

= 1.4× 1013 combinations!

— would have to be examined to guarantee finding
a global minimum of the target function (minimum
Bnor, together with any current density minimiza-
tion).

Thus, the combinatorial optimization problem
confronting us consists of a ‘state space’, a target
‘cost function’ to be minimized and a discrete but
very large set of possible solutions. From previous
calculations, we also know that the solution space
exhibits many local minima. One approach to this
problem is to apply a genetic algorithm (GA) [6],
which is a non-gradient based optimization method
that has been successfully applied to several prob-
lems of this type [7]. The GA works with a population
of ‘individuals’, each of which represents a possible
solution to the optimization problem. Each individ-
ual is assigned a ‘fitness’ according to the value of
the cost function. The fittest individuals, those with
the lowest value of the cost function, are allowed
to reproduce by cross-breeding, thereby producing
a new generation of individuals (population of new
possible solutions) that contains a high proportion of
the best characteristics of the previous generation. In
this way, over generations, the good characteristics
(low cost) are spread throughout the population and
the most promising areas of the search space can be
explored in a computationally efficient manner.

2. The genetic algorithm

2.1. Overview

An overview of the steps in the GA is shown in
Fig. 4. For further information and different applica-
tions the interested reader is referred to Refs [8–12].

To apply the GA to the problem of cutting dis-
crete coils for a stellarator, we proceed as follows.
First the current potential Φ(u, v) defining a cur-
rent sheet on a specified current winding surface is
discretized into a large number of equally spaced
contours (e.g. Fig. 2). These contours represent
the pool of individuals from which the final, much
smaller, subset of coils will be chosen. The GA will
be used to decide which coils are to be retained, on
the basis of their evaluated fitness (matching Bavgerr

and current density targets). Let NΦ denote the total
number of coil contours. In addition, let Nc denote
the number of coils desired in the final coil design.
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Figure 4. An overview of the steps in the GA. Mutation

is not explicitly shown. If it occurs, it takes place before

the new offspring are included in the new population.

The GA will select the ‘best’ Nc coils out of the
available pool of NΦ. Let a binary string with NΦ

bits describe the energized states of coils in the pool.
The jth element of the string describes the state of
the jth coil: if its value is ‘1’ it is energized (retained
with a finite current); if its value is ‘0’ it is not. Any
NΦ bit pattern comprising Nc elements with value
‘1’ and NΦ −Nc elements with value ‘0’ describes a
coil system whose fitness to represent the final coil
design can be tested. Each such binary string (bit
pattern) is termed a ‘chromosome’.

An initial ‘population’ of Npop chromosomes is
selected. Each chromosome has a random bit pat-
tern. The fitness of each chromosome in the popu-
lation is determined by optimizing the values of the
currents in each energized coil so that a weighted sum
of two quantities is minimized. The first quantity is
Bavgerr , the average normal component of the magnetic
field error at the plasma boundary normalized by
the local total magnetic field. This is a measure of
how well the coil system defined by the chromosome
can reconstruct the design baseline equilibrium. In
practice, it has been found that Bavgerr . 1% is a
requirement for adequate reconstruction. The sec-
ond quantity is the maximum current Imaxc in an
energized coil. Engineering constraints require that
Imaxc . 15 kA/cm2. Further details of the calcula-
tions of Bavgerr and Imaxc are given in Sections 4 and
5.

Figure 5. The mating process using uniform crossover.

After the fitness of each chromosome has been
ranked, the half of the population that is most fit
is placed in a ‘mating pool’ and the other half is
discarded. Mating ‘parents’ are chosen by tourna-
ment selection [9]. In this procedure, a subset of pos-
sible parents is randomly chosen from the mating
pool. From this subset, the one with the best fit-
ness becomes a parent. This procedure is repeated
until the required number of parents is obtained. We
have chosen a simple reproductive evolution process
in which two parents create two offspring using a
technique called single point crossover. Since each
chromosome consists of NΦ bits, each parent can be
divided into two pieces atNΦ−1 places. For each par-
ent couple an integer random number is generated
such that 1 ≤ nran ≤ NΦ − 1. Each parent chro-
mosome is then divided at that place in two pieces.
The left part of the first parent chromosome is spliced
with the right part of the second parent chromosome,
and vice versa, to form two offspring. Figure 5 illus-
trates this form of reproduction for two chromosomes
with NΦ = 15 bits, corresponding to a contour pool
of fifteen coils of which four are energized.

Before the offspring are added to the population,
the possibility of mutation during reproduction is
considered. Let 0 ≤ Pmut ≤ 1 be a chosen prob-
ability that a mutation occurs. A random number
0 ≤ Pran ≤ 1 is generated; if Pran ≤ Pmut a muta-
tion occurs. If not the offspring are added to the pop-
ulation as is. Two types of mutation have been used
in our implementation of the GA — jump muta-
tions and creep mutations [13]. Random numbers
0 ≤ Pjump ≤ 1 and 0 ≤ Pcreep ≤ 1 are generated and
a jump/creep mutation occurs if Pran ≤ Pjump/creep.
In a jump mutation two randomly located bits of an
offspring chromosome are interchanged. In a creep
mutation two neighbouring bits are interchanged.
Examples of the mutation processes are shown in
Fig. 6. It is the diversity of reproduction in the GA
that inhibits trapping of the population in local min-
ima.
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Figure 6. Examples of the two mutation processes.

The completion of the steps outlined in Fig. 4
constitutes a generation. The procedure is repeated,
beginning with a new population, until a satisfactory
solution is obtained or a stated maximum number of
generations has been examined.

2.2. Fixing the number of coils in a set

In the usual GA, the range of the variable rep-
resented by the binary string is set such that the
minimum value is given by the string consisting of
all zeros (all bits are ‘off’), and the maximum value
is given by the string consisting of all ones (all bits
are ‘on’). Therefore, in the usual GA any number
of bits may be ‘on’ in any chromosome. In the case
of the coil selection process, a fixed number of coils
Nc is sought. Therefore, an additional step has to be
taken in order to preserve this number.

After the GA has produced a new individual, it
is checked to determine its length, i.e. the number of
bits that are ‘on’. If there are more than Nc bits ‘on’
the chromosome should either be discarded or else
be modified. Since discarding the individual would
then require an additional mating, and we would not
be guaranteed that the new chromosome would be
too long, we chose to modify the chromosome. This
was done using the following procedure. If a bit is
‘off’, the next bits are scanned until an ‘on’ bit is
found. A random number 0 ≤ Pchange ≤ 1 is gener-
ated. If Pchange ≤ 0.5 the bit is turned ‘off’ and if
Pchange > 0.5 it remains unchanged. Then, starting
at the next bit the procedure is repeated until the
number of bits that are ‘on’ equals Nc. Note that if
a chromosome has less than Nc bits ‘on’ it is allowed
in the population because coil sets with fewer coils
are desirable.

3. Computational details

3.1. The inductance matrix

Previous methods for finding stellarator coils
have used a Fourier representation for the shape of

filamentary coils on the CWS and a Fourier rep-
resentation for the shape of the CWS itself [14].
The Fourier coefficients of both the filaments and
the CWS are allowed to vary in an optimization
loop which minimizes a combination of engineering
constraints. Such techniques are very flexible, but
the calculation of the magnetic field at the plasma
boundary is computationally expensive. Each time
the coils are moved the magnetic field on the plasma
boundary must be recomputed using the Biot–Savart
law.

For the GA, the coil pool from which the evolv-
ing population is constructed is fixed. An inductance
matrix G, of dimension Nuv ×NΦ relates currents in
each of the NΦ coils in the pool to the normal mag-
netic field at Nuv points on the plasma boundary,

G · I = n̂ ·Bstell. (5)

The full G matrix can be calculated once outside of
the optimization loop, then reused within the loop
when calculating the magnetic field on the plasma
boundary due to each member of the population in
each generation. This simply requires compacting the
full inductance matrix into an Nuv × Nc reduced
matrix Gc obtained by eliminating those columns of
G which correspond to coils that are not energized.
The magnetic field is then evaluated by the simple
matrix multiplication

Gc · Ic = n̂ ·Bstell. (6)

3.2. Calculation of coil currents

After the GA has chosen to energize a particular
coil subset, the current in each of these Nc coils must
be evaluated. The choice is that vector Ic which min-
imizes

χ2 = |Gc · Ic − n̂ · (Btok +Bpl)|2. (7)

The solution to this subsidiary minimization problem
is obtained by singular value decomposition (SVD)
[5], giving

Ic = V[diag(1/wj)][UT · n̂ · (Btok +Bpl)] (8)

where

Gc = UwVT (9)

is the SVD of the compressed inductance matrix. U
and V are Nuv × Nc and Nc × Nc unitary matrices
(eigenfunctions, respectively, of GGT and GTG), and
w is an Nc × Nc diagonal matrix of ‘singular val-
ues’ wj (the square roots of eigenvalues of GGT and
GTG).
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Table 1. NESCOIL current sheet solution and results using 13 coils per half-period, chosen

equally spaced in Φ

Source Solution Bavgerr (%) Bmaxerr (%) Jmax (kA/cm2)

NESCOIL Current sheet 0.22 2.0

Equi-∆Φ 13 coils per half-period 0.95 7.0 14.7

4. Results

4.1. Coil studies

In general, the current potential on a prescribed
CWS enclosing a chosen plasma can be written as
the sum of a secular and a periodic contribution [4]:

Φ(u, v) = ctu+ cpv

+
∑M
m=0

∑N
m=−N Φmn sin 2π(mu+ nv). (10)

Non-zero secular coefficients ct and cp correspond to
coil topologies with net poloidal and toroidal cur-
rents (e.g., stellarator modular coils or wavy PF
coils). A saddle coil design with ct = cp = 0 is being
considered for NCSX. For this design the toroidal
flux requirements of the plasma are provided by
external tokamak field coils. The saddle coils provide
the required stellarator magnetic field for producing
the rotational transform.

We seek a saddle coil design to support an equilib-
rium configuration named C82 (Fig. 1). The major
plasma parameters for C82 are 〈R〉 = 1.45 m, 〈a〉 =
0.42 m, β = 4%, Ip = 200 kA and BT = 1.2–2T.
A current sheet solution was determined on a CWS
conformal with the plasma boundary and separated
from it by a normal distance of 18 cm. NΦ = 60 con-
tours of the current potential are shown in Fig. 2.
These contours form the coil pool for the GA.

4.2. Benchmark for comparison
of GA results

In order to evaluate the effectiveness of the GA,
it is useful to establish a benchmark with which to
compare the GA results. We begin by noting two cri-
teria that are needed for an efficient coil design. The
first is an engineering constraint: in order to oper-
ate the coils reliably and cool them effectively, the
coil current density must be kept below 15 kA/cm2.
This puts a constraint on the minimum allowable
separation between coils. The second criterion is a
physics constraint: the field produced by the coils
must provide a satisfactory match to the field from
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Figure 7. Average error obtained by the GA as a func-

tion of the number of generations for 12 coils per field

period.

the target equilibrium in order for that target to be
reconstructed. The average error is

Bavgerr ≡
1
N

N∑
i=1

|Bi · n̂|/|Bi| (11)

where N is the total number of points at which the
field is calculated on the plasma boundary. In prac-
tice, it has been found that the average fitting error
Bavgerr must be .1% for an NCSX plasma.

The benchmark was obtained by taking a fixed
number of current potential contours, equally spaced
in Φ, with equal currents in all coils, and finding the
minimum number of coils required to obtain Bavgerr <

1%. In order to satisfy this limit, 26 coils per field
period were required, carrying a maximum current
of 14.7 kA/cm2. This result is tabulated in Table 1,
where, for comparison, we also show the fitting error
obtained from the continuous NESCOIL current
sheet solution (a lower bound for any discrete coil
calculation).

Our initial GA calculation selected 24 coils per
period and ran for 3000 generations. The results are
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Figure 8. The two helical coils obtained from the zero value of the current potential.

shown in Fig. 7. Although 3000 generations were
computed, no better solution was found after gen-
eration 1600, the last point on the curve. The GA
found a solution with average Bavgerr = 0.33% and
maximum Bmaxerr = 2.55%, an improvement over the
similar equally spaced coil set of nearly a factor of
three. There are two important points to be noted
in this figure. First is the rapid rate of convergence
(the number of generations is shown on a logarithmic
scale). Second is the accuracy attained. As previously
mentioned, good reconstructions have been obtained
with errors .1%, and the GA has found solutions
well below that limit.

The goal of this work is to find the minimum num-
ber of coils with current densities below the engineer-
ing limit that can still reproduce the magnetic field at
the plasma boundary accurately enough that the tar-
get plasma can be reconstructed. The results shown
in Fig. 7 suggest that we have sufficient margin in
Bavgerr to decrease the number of coils and still meet
the 1% error criterion.

4.3. Decreasing the number of coils

Depending on whether the original coil pool is
obtained by contouring the current potential with
an odd or an even number of contours, a helical coil
associated with the contour value Φ = 0 may or may
not be present in the coil pool. The Φ = 0 contour
is shown in Fig. 8 for the three periods of the CWS.
Each helical coil wraps around the plasma twice in
the toroidal direction (V ) and three times in the
poloidal direction (U) before joining back on itself.
The helical coil is clearly a special topology among
the saddle coils. Since its effect on reconstructing the
target plasma is not known a priori, it was deemed
important to include — at least initially — the zero
potential coil in the available pool.

Thus, beginning with the NESCOIL current
potential we choose two sets of contours to provide
the candidate coils, namely those obtained by choos-
ing 60 and 61 equally spaced contour levels. In each
case, because of the coil degeneracies previously men-
tioned in the Introduction, a total of 98 individual
coils are in each pool. In the case of 60 equally spaced
contour levels, this leads to 49 independent coils and
their 49 stellarator symmetric images. In the case of
61 equally spaced contour levels, there are 50 inde-
pendent coils. There are 48 saddle coils and their
stellarator symmetric images and the 2 helical coils
described earlier.

We begin by targeting only Bavgerr in the cost func-
tion and ignore the engineering constraint on the cur-
rent density. The GA was asked to select 14 coils per
period from the set of possible candidates that min-
imize Bavgerr . The GA ran for 3000 generations and
found a set of coils that reduced Bavgerr to ≈0.5%,
a little more than twice the theoretical minimum
NESCOIL current sheet solution error of 0.22%. The
number of coils was then reduced by one and the pro-
cess repeated until the maximum acceptable error of
1% was exceeded. The results are shown in Fig. 9. For
between 8 and 14 coils per period the error decreases
almost linearly. Only in the case of 6 coils per period
does the error exceed 1%. None of the final coil solu-
tions contained a helical coil.

4.4. Targeting a combination of Bavg

err
and

Jmax

c

Almost all of the coil solutions shown in Fig. 9
have maximum coil current densities Jmaxc that
exceed 15 kA/cm2. To obtain coil solutions that sat-
isfy both the physics reconstruction and the engi-
neering coil current density criteria it is necessary to
target both Bavgerr and Jmaxc in the GA cost function.

Nuclear Fusion, Vol. 41, No. 9 (2000) 1191
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Figure 10. Variation of minimum coil separation with

the curvature of the current carrying surface.

In this article, we use a crude estimate for the
coil current density. It approximates the finite extent
(‘build’) of the coils, as well as the coil supports (‘lig-
aments’). A schematic diagram of this is shown in
Fig. 10. Let i and j denote neighbouring coils, car-
rying coil currents Ii and Ij . The coil centroids lie
on the CWS and are separated by a distance dsep.
Neighbouring coils are assumed to have the same
width w and the same height h. Finally, let wsupport

denote the width of the coil support located between
the coils labelled i and j. On the CWS there are as
many neighbouring coil pairs as there are individual
coil members. An averaged coil current density is cal-
culated for the coil pair ij by averaging the currents
over the adjacent coil blocks,

Jij =
0.5|Ii + Ij |

hcopper(dsep − wsupport)
. (12)

The maximum coil current density is then

Jmaxc = max
[ij]

Jij . (13)

The coil build and support parameters assumed are
hcopper = 7.0 cm and wsupport = 1.0 cm. The coil
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Figure 11. The minimum error obtained where Jmax ≤
15 kA/cm2.

Table 2. Comparison of the uniform ∆Φ equal current

case with the GA results

(CPFP stands for coils per field period)

Source CPFP (Bavgerr ) (Bmaxerr ) Jmax

Equal 26 0.95 7.0 14.7

GA 14 0.52 2.8 14.2

GA 12 0.61 3.8 12.7

GA 10 0.77 5.7 13.2

GA 8 0.92 5.0 14.2

currents and separation distances are calculated by
the GA for each candidate coil solution (population
member).

The composite target cost function can be written
as

C = (1.0− α)Bavgerr + αJmaxc /Jnorm (14)

where Jnorm is a scale factor used to normalize the
magnitude of the current density so that it will be of
the same order as the error. In the previous section
we used α = 0, and therefore current density played
no part in the determination of the error. Now, since
we are looking for solutions with Jmaxc ≤ 15 kA/cm2,
we scan α between 0 and 1. The lowest average B
errors with current densities below this upper bound
are shown in Fig. 11.
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(a)  These coils impede access to the plasma

(b)  Large open areas for diagnostics and heating

Figure 12. Comparison between the coil set found using

equally spaced contours (a) and the coil set found by

the GA (b) both having almost equal error and current

density.

5. Conclusions

The GA is an extremely useful and flexible tool for
finding coils that meet the engineering constraints for
a compact stellarator. In this article the GA was used
to obtain coil sets with both fewer coils per period
and lower current densities than had been obtained
using previous coil cutting algorithms [4]. The final

results are compared in Table 2 with the uniform
∆Φ case (corresponding to equal currents in all the
saddle coil filaments). The coil set obtained using
the GA also provides better access to the plasma by
reducing the number of coils while still maintaining
a constant value of Bavgerr . Figure 12 shows the coil set
found by using the equally spaced contours (26 coils
per period) and a coil set found by the GA (8 coils
per period). The red surface represents the plasma
boundary. In particular, note that the GA was able to
eliminate the coil that previously obstructed access
at the outboard midplane.

In this article we have demonstrated the useful-
ness of the GA for determining filamentary saddle
coil sets for low aspect ratio stellarators. The next
step in the design of a real coil set will be to assess
the impact of finite coil thickness on the Bavgerr match-
ing process. Although this is a straightforward gen-
eralization of the procedure described in this article,
its implementation and implications are beyond the
scope of the present work. In addition, the adequacy
of the level of Bavgerr attained with any set of coils
must be determined by comparing the magnetic sur-
faces reconstructed from the coils with the set of sur-
faces originally obtained from a stellarator optimiza-
tion process. This comparison is shown in Fig. 13,
which shows the original flux surfaces (solid curves)
for C82 and those obtained from the free boundary
VMEC code, using the saddle soils shown in Fig. 12.
The values of the average and maximum displace-
ments between the original plasma boundary and
the boundary obtained from the free boundary equi-
librium calculation using the filamentary coils are
shown in Table 3. Although the displacement for the
GA obtained filaments is larger by a factor of about
two, the number of coils in the GA set is smaller by
a factor of over three. In addition, the larger error
for the GA coil set can be seen in the figure to be
localized to the points in the crescent shape and the
outboard midplane in the Nφ = 0 plane. All other
regions of the surface are well fitted.

The ultimate test of the adequacy of any set of
coils is to check for the maintenance of the physics
properties (transport and stability properties) when
a magnetic reconstruction is performed using a free
boundary MHD code, such as PIES [15], which does
not assume the existence of nested magnetic sur-
faces. Typically, when this is done it is found neces-
sary to add small correction (or ‘trim’) coils in order
to cancel small resonant components of the residual
Berr spectrum. While the details of this procedure
go beyond the scope of the present considerations,

Nuclear Fusion, Vol. 41, No. 9 (2000) 1193



W.H. Miner, Jr., et al.

0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0    2.2

r
0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0    2.2

r

0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0    2.2

r
0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0    2.2

r

0.8

0.6

0.4

0.2

z   0.0

-0.2

-0.4

-0.6

-0.8

0.8

0.6

0.4

0.2

z   0.0

-0.2

-0.4

-0.6

-0.8

0.8

0.6

0.4

0.2

z   0.0

-0.2

-0.4

-0.6

-0.8

0.8

0.6

0.4

0.2

z   0.0

-0.2

-0.4

-0.6

-0.8

(a) (b)

(c) (d)

Figure 13. Comparison of the reconstructions using the coil set found using equally

spaced contours (a, b) and the coil set found by the GA (c, d), both having almost

equal errors and current densities in the two toroidal planes Nφ = 0 and π.

Table 3. Comparison of the average displacement and the maximum displacement

between the original plasma boundary and the reconstructed plasma boundary for

the constant ∆Φ constant current case and the eights coils per period GA case.

Source Average displacement (cm) Maximum displacement (cm)

Equal 0.47 2.09

GA 1.16 4.37

it is worthwhile mentioning that such a procedure is
under development [16].
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