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Abstract

We compare three theoretical approaches to the transport of small scale
oceanic internal waves; these are Induced Diffusion, Meiss-Watson trans-
port, and Eikonal Monte-Carlo Simulations. The transport is forced by a
background given by the Garrett-Munk spectrum, except that the spec-
trum is truncated in order to guarantee the correctness of the assumption
of scale separation and of the eikonal approach. It is found that the oceanic
interactions are too strong for the validity of either Induced Diffusion or
the Meiss-Watson theory. This conclusion is also derived in the context of
perturbation theory, where the second order term neglected in the transport
theories is shown to be larger than the first order term.
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1. INTRODUCTION

The problem of the transport of small scale internal waves through the
ambient internal wavefield of the ocean has generated a considerable interest
over the last few years. The importance of this kinematic regime was identified .

by McComas and Bretherton, (1977) who named the relevant transport process
"induced diffusion.” Their study and most subsequent studies (Pomphrey.

Meiss, and Watson (1980), McComas and Muller (1981)) were based on weakly
nonlinear interaction theory (WNIT). Indeed, diffusion in phase space {i.e. wave
number and physical space) is a consequence of scale separation and weakly
nonlinear transport. More recent approaches have attempted to go beyond
WNIT. Meiss and Watson (1982) (MW) derived a transport equation that was
apparently different from that of McComas and Bretherton. Henyey and Pom-
phrey (1983) (HP) carried out a set of Monte-Carlo calculations on the eikonal
equations for small scale internal waves, They interpreted their results to mean
that a diffusion of small-scale internal wave transport is incorrect. Since HP did
not use a transport equation (but instead included the random effects by the
Monte Carlo technique), they were able to refrain from any assumption on the

strength of the interaction.

The purpose of this paper is to compare the WNIT, the MW theory, and the
HP calculations. We restrict ourselves to the question of the adequacy of the
assumptions on the strength of nenlinear interactions. We take care to avoid
having to resolve another important issue, that of whether a scale separation

exists in the ocean between the forced and the forcing waves.
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The internal waves responsible for the transport will be referred to as "the
background” and the small scale waves whose transport we are following as "the
test waves.” The background flow is described phenomenologically by the

Garrett-Munk model.

The set of approximations made on the test waves in most studies consist of

one or more of the following:

1. Scale separation. The background waves have longer wavelengths (both

horizontal and vertical) than the test waves.

2. Absence of strong correlations. The properties of the test waves are essen-
tially constant over a period of time long enough to decorrelate the test

wave from the background.

3. Weak interactions. Only resonant interactions last long enough to have an

important effect on the transport of the test waves.

Approximation 1 has not been questioned in the literature, but its validity
for internal-wave transport is not well established. In order to separate the
issues of the various approximations this paper will consider only examples in
which scale separation is manifestly correct. A future paper will discuss the

scale separation issue.

Approximation 3 was made in the early studies. This assumption has been
objected to by Holloway (1982) and by Meiss and Watson. Holloway shows that
interaction times, appropriately defined, are shorter than wave periods and
takes this result to mean that WNIT is wrong. Holloway concentrates on the
definition of interaction time, and accepts the common view that the wave.
period is the proper cémparison time. Careful studies of stochastic differential
equations ( Van Kampen (1981) ) have, however, established that the com-
parison time should be the correlation time, which in general has no particular

relationship to the wave period. Van Kampen (1981) refers to the ratio of
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correlation time to interaction time as the "Kubo number.” We adopt his termi-
nology in this paper.

Thus, Holloway's considerations do not settle the issue of the adequacy of
WNIT. One purpose of the present paper is to provide a definitive answer to this

issue in the "induced diffusion” kinematic regime.

As a consequence of Van Kampen's considerations, it is seen that the
assumption of the absence of strong correlations is a part of the assumption of
weak interactions, and does not have to be considered as a separate issue. It
might seem reasonable to assume the absence of strong correlations even if the
interaction is not weak. Meiss and Watson (MW) re-examined the problem without
making the weak interaction approximation. By making a weal correlation
approximation they were able to complete the derivation of a transport equa-
tion. The essential approximation of MW is that the test wave group velocity
(especially in the vertical direction) can be considered constant over a correla-
tion time. Their transport equation has the structure that the density of waves
in position wave number phase space, averaged over the ensemble of back-
grounds, suffices to close the equation (without.a memory Kernel). A further
purpose of this paper is to understand the relationship of the MW theory to weak
interaction theory, and to assess its validity. Meiss and Watson's approximation
is suggested by a diffusion - Like picture of the transport. In such a picture, the
test waves take small steps in phase space, with an uncorrelated foreing in each
step. If the diffusion picture is correct, the kinematics of the test wave can be

considered constant over each small step.

Henyey and Pomphrey (1983) (HP) have carried out a study in which
approximation 2 was not made. As a result, no transport equation was derived,
but rather Monte-Carlo studies were made. The numerical results obtained by

HP suggested to them a nondiffusive picture of transport, inconsistent with
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approximation 2. The HP picture includes a strong correlation between the
vertical position of a test wave packet and the phase of the background waves,

leading to critical layer phenomena. Since

t
z(t) = zo+{vg(t’)dt' (1)
and z, is assumed uncorrelated to the background, it follows that v, cannot be

considered constant for a correlation time in this picture.

In this paper we wish to compare the WNIT, the MW, and the HP approaches.
We do so in the context of a model which is representative of the features of the
oceanic interaction we believe to be important with the possible exception of |
scale separation which we put into the model but which might not be correct in
nature. With the imposed scale separation, the HP approach, up to questions of
numerics, is known to give correct results. Therefore the assumptions made by
the other approaches can be tested by numerical comparison with the HP

results.

The dominant transport of short horizontal wavelenéth internal waves is in
their vertical wave number k,. Strict diffusion (which is different from the MW
transport equation) has the RMS k, value increasing roughly like t%# and the

mean k, increasing according to

Edt'“‘") = <dD(k,)/ 8k, > (2)
where D( k,) is the k,-dependent diffusion coefficient. The critical-layer pic-
ture has < k,> increase rapidly due to the occurrence of critical layer events,
and the RMS k&, increase because of the different times for critical layer events

in different members of the ensemble of background flows.
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Therefore, we calculate <k,> and k. = V<kg> - <k, >? byall
methods, and compare the results.

We take care that the inijtial conditions and the specification of the back-

ground are identical in the different calculations.
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. THE MODEL

In this section we describe the background ocean model used in our
comparison. The model is designed to approximate conditions in the real ocean
to the extent that they matter for the transport, with the possible exception of
the small scale content of the background. The elimination of these small scales
is done in order to enforce scale separation between background and test waves,
so as not to confuse the issues of the validity of the various approximations
made. The model also makes some simplifications which have been demon-
strated in all approaches not to have a significant effect. These simplifications
include setting the frequency of all background waves to the inertial frequency
f, choosing the Brunt-Vaisdld frequency N to be depth independent, and to

ignore the horizontal dependence of the background waves.

The value of N is chosen to be the Garrett Munk {1979) (GM) value at one
scale depth. GM chose N = Nge?*/f with Ny = 3 cphand B = 1.3km. So
weuse N = 3cph e”!. The intensity and vertical wave number spectrum of the
background are given by the GM model, with N/ Ny = e~!. A wave number
cutoff of K, = 17.8km ™!, corresponding to mode number 20, is imposed. Thus

the background is

[~ o~ .
U = Z 2V<UF> cos K,z Re [(z+iy)e ¥ a; | | (3a)
j
where g; is a complex Gaussian random variable with
<lgjl2> =1, (3b)
= TN
K = [ N ] . (3¢)
and
<UE> = 3528 Now —2L° (3d)
! 2 m (4% + 5§

with 7, = 3.
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The test waves are assumed to obey the Taylor-Goldstein equationa

V28, -0 VPy+N2(32+a2)y+f2a%y =0 (4)

where ¥ is some appropriate variable which measures the test wave amplitude.
This equation is linear in %, and although not quite self-adjoint, becomes so

upon multiplication by the inverse Laplacian operator.

We choose initial conditions to be a state with a narrow band spectrum cen-
tered on horizontal wave number ky = 31km~! and vertical wave number
k, = 44km™! The initial state is statistically independent of the background. .
As the test wave evolves we discard all components with vertical wave number in
excess of 27/ 10 m, roughly at the observed cutoff in the ocean internal wave
spectrum ( Gregg {1977) ) The model assumes that waves that reach this wave
number are lost to the internal wave field by breaking or other dissipative

processes.

The transport in vertical wave number has been universally recognized as
the most important aspect of the transport. Therefore our diagnostics in the
comparison consist of the time evolution of the vertical wave number distribu-
tion of test wave action intensity, especially the zeroth, first and second
moments of the distribution, averaged over the ensemble of random back-
grounds (the zeroth is non-trivial because of the assumed dissipation at the

high wave number).
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III. EIKONAL APPROACH

The eikonal, or ray-tracing, approach is described in detail in HP (Henyey
and Pomphrey (1983) ) It consists of imagining a decomposition of the small-
scale part of the wave field into wave packets, each with a small spread of
wavenurnbers, centered on a value £ and occupying a region near some point
#. Wave packets {generally with different £'s) can overlap, and fill space, and
in the approximation that the test wave field is of low intensity, can be regarded
as independent of each other. The evolution of the small-scale wave field is con-
structed from the motion of individual wave packets as they move through the

large-scale background.

The ray equations are defined by a frequency function

w=0c+0"k , (5)

and the set of equations
=g =2080+0 - (6a)
E=-Vo= -V-VO £ . (6b)

The function w includes the "intrinsic” frequency (dispersion relation) for inter-
nal waves

k§ + k2 (7)

- [ N*k§ + 1%k ]"
(where kg and k, are the horizontal and vertical wavenumbers, respectively),
and the Doppler shift U - E. The interaction of the wave packet with the back-
ground is entirely due to the Doppler shift term.

The ray equations (5) and (6) are of Hamiltonian form, where the Hamil-

tonian can be chosen as H = Aw, and the momentum as 2 = 4k. A is
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the wave action of each packet, and is conserved along packet trajectories. The
relationship of H to the wave energy and P to the Stokes drift is discussed in

detail by HP.

Each term in the ray equations has a simple interpretation. The velocity #
is the sum of the wave group velocity, ; = 8o, and advection by the back-
ground flow. The evolution of the wavenumber, E . is the sum of the WKB scaling
term and the shearing of the waves by the background. The most important

part of the transport comes from the vertical shear of horizontal current
k, = -8z Uy Ky . - (8)

The ray equations do not constitute a transport theory; the average over the

ensemble of background flows has yet to be done.

If the interaction is assumed sufficiently weak, induced diffusion can be
recovered. By any of a number of formalisms, it can be shown that a Hamil-
tonian system weakly interacting with a random background undergoes diffusion

"in phase space. Each packet separately undergoes diffusion when averaged
over backgrounds and the action of each packet is conserved, so it is action den-
sity which diffuses.

In this paper we use Van Kampen's (1974) formalism applied to the Liouville
equation, mainly because our discussion of corrections to WNIT is based on it.

The Liouville equation for the phase space probability density p is

° = [:T]plwsc spacs P (ga)

= [0+ @ + D)0, - (Vo + VO E) o0 | p (9b)

= a‘p + L(t)p ' (gc)

where L is the Liouville operator on phase space. 73 = 8z 0 is the group
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velocity of the test wave.

We are interested in < p >, the ensemble average of the probability
density. Since the Liouville equation is linear, the solution p can be expressed

in terms of an evolution operator G(t):
plt) = G(t) p(0) . (10)

Neglecting the time dependence of L (t) (which arises because the background

flow U istime dependent), gives
G(t) = exp(-Lt) . (11)

But this solution is not particularly useful, since we are interested in <G{t)>,
and the ensemble average is hard to evaluate. Therefore, we {ollow van Kampen

and decompose into deterministic and fluctuating parts

L=Io+1, (12a)

Lo = U4 8,-Va -0z (12b)
L, =0-8,-VU k-3 (12c)
Go(t) = exp(-Lot) (13a)
G(t) = Go(t)g(t) . (13b)

It can easily be seen that g(t) obeys the equation

0; g(t) + L(t)g(t) = 0 , (14)
where

L{t) = Go'(t) La(t) Golt) . (15)

The transformation from L, Gto L g is known as going to the interaction
representation. What has been gained is that <Li> = 0. The price paid is that,

although it makes sense to ignore the time dependence of L,(¢), it makes no
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sense to ignore the time dependence of L(t).

The formal solution of Eq. (14) is

g(t) = Texp

-j:' L'(t')dt'] , (18)
where the time ordering symbol T means that in the Taylor series expansion of
the exponential the operators L{t,), L(£z'), . . . are ordered so that if ;' <,
then L{#;") is farther to the right than L'(¢;'), i.e. the earliest operators are on
the right and the later ones are placed successively to the left. Thus

¢ 1' Ly

[
= {dtl'_{dtg'... jo' dt,' L(¢ L (£2). . Lt . (17)

n

fe
T;-Ll-,—lfdt'L’(t')
‘10

The %— has been absorbed in nesting the integrals. From this expression one

immediately sees that g(t) obeys the integral equation.
t
g(t) = 1+ [LUeg(thar (18)

and a differentiation shows that g obeys Eq. (14).

The time ordered exponential of operaters can be shown to have the pro-
perty, as does the ordinary exponential of numbers, that its expectation value
over an ensemble is given by the exponential of the sum of cumulants (Van
Kampen 1981). In particular, since we are assuming U to be a zero-centered

Gaussian process,

t
<> = <Texp[- fL'(t')dt']> (19a)
[+)

H ¢
= Texpé—-ja-dt'{dt" <L(t) L(t")> . (19b)

By nesting the two integrals,

¢ r

<g> = Texp [dt' [ dt" <L{t)L(t")> . (20)
0 0
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Differentiating, we obtain
‘M

t H
d<g(t)> = T <L(t) [L(t)dt >exp [dt” [dt™ <L{EILE™ > .(R1)
[’] Q

0

The G, can be put back in to obtain
¢
8, <G(t)> = -Lg<G(t)> + T<Go(t)L(t) fL(t)dt'> (22)
8]
t | 3¢
exp [ dt" [ dt™ <L{t")L(t") >
Q [}

So far, the expression exactly represents the solution. We are now ready to
assume a small Kubo number. The two correlated interactions in each pair have
to be within about a correlation time of each other. Thus one of the ¢, ¢

integrations gives a factor of about 7, the correlation time. Each L is an

interaction rate, so <L1L> gives a factor -le—- The remaining integration gives a
i

tr
factor t. Therefore the exponent is roughly ‘r; - The dominant terms in the
3

Taylor series for ¢e* when z islarge are n ~z. Therefore if t >> 72/ 7,. the

tT
dominant number of correlated interaction pairsisn = ; - The typical
i
: e _ T
spacing in time between pairs is el (Kubo number)™® r, while the
_'e

time between interactions of the same pair is 7,. Thus the probability for a pair
to overlap one of its neighbors is on the order of (Kubo number)® and this pos-
sibility can be neglected if the Kubo number is much smaller than unity. In par-
ticular, the leftmost pair in Eq. (27) can be considered to occur later than any of
the pairs in the exponent, since one of its interactions occurs at time t. Thus
the time order'mg. symbol can be moved past the first correlation bracket, and
acts only on the exponential. But the time ordered exponential is just <g(t)>, or

Gg! (t) <G(t)>. Therefore, for small Kubo number we obtain
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¢
8:<G(t)> = [-Lo+ Go(t) <L'(t)_0fL‘(t')dt'> Go"(t)]G(t) - (23)

Expressing L{(¢) interms of the interaction I4{(¢{) and using

Go(t,) Go(ts) = Gt + t3), this can be written as

[
B, <G(t)> = | -Lo+ <Ly(t) [ dt' Go(t ') La(t") Gg' (£ ~£)>| G(t) . (24)
0

the lowest order van Kampen expression. Since the correlation time is short
compared to the interaction time, G(f) does not significantly deviate from the
identity operator until £>>7,. Therefore, the lower limit can be replaced by - .
Moreover, since we assume a stationary process for the random L, both L's can

be shifted by a time £’ so that

[ -
8, <G> = [ Lo+ fdT <Ly(7) Gg (1) Ly(0) Gg'(T)>[<G> . (25)
0
This equation is, in general, a Fokker-Planck equation in phase space. For our

purposes it can be written as a diffusion equation. First we remove the WKB scal-

ing term Vo * 3p from Lo either by neglecting the small dependence of the
Brunt-Viisala frequency on the vertical position or by changing variables from
vertical wave number to mode number. We use the former way for notational
purposes, since it agrees with previcus derivations of induced diffusion. Thus

GQ(T) is

exp( - 77, * 85)

We are only interested in distributions in k,. We either consider the distribu-
tion to be spatially homogeneous or we integrate over space. 'I'hﬁs any ter@s
with 0, on either the left or right can be dropped. (Since we dropped the space
dependence of N, <...> is always independent of space.) The only 8p terms

from commuting Gg(T) through L,(0) is
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dg { dr <VO(F.7) EVD (# - 9,7.0) K > 9

Thus Eq. (30) is the induced diffusion equation
8;<G> = 8p D(F) 3g <G> , (28)

where, since < > is translation invariant

D) = [dr<vU@77)VD(0.0)> . (27)
0
Specializing to the vertical component which is the most important tez'm.1
0: <G> = Bkv Dag 6,,” (G) , (28)
where
Dss = [d7<3,0(0, 70,0 (00)> . (29)
0

By Fourier transforming, Dgg can be written as
Dgs = [ dK,dQ K2 <U3(K, Q)>6(Q-K - 9;) . (30)

" If the Garrett-Munk spectrum is put in, this expression for the diffusivity
agrees with those previously calculated (McComas and Bretherton (1977);

McComas and Muller (1981) )

The main result of this section has been to show that the eikonal approach
is neutral as to the validity of WNIT. If the WNIT is made, the same induced
diffusion equation results as if the WNIT is made in the mode representation with
scale separation being applied afterwards. We have also introduced the formai-
ism we will need later on and have shown why the correlation time, rather than
the wave period, is the appropriate time scale to compare to the interaction

time.
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IV. INDUCED DIFFUSION

In this section we obtain the induced diffusion predictions for < k, > and
kyrms = V <kZ>-<k,>? as a function of time by solving the diffusion equation

(35) for our model.

Figure 1 shows the diffusivity Dzs as a function of k,. An important pro-
perty of Dgg in our model is its vanishing for k, > 113 km 1. The reason is that
the delta function in Eq. (30) requires that the test wave vertical group velocity
v, is equal to the background phase velocity f / X,. K, cannot exceed our
backgrouhd cutofl. Therefore there is a minimum possible value of f/ K, = v,
Since the test wave horizontal wave number is fixed, this translates into a max-
imum possible vertical wave number contribution to the integral. As a conse-
quence, since we start the test wave in a region for which Dgss is nonzero, it
never leaves this region. In effect, the cutoff in the background X, has induced

reflecting boundary conditions as k, = 113km™"

We use a spectral method to selve the diffusion equation. We diagonalize

the diffusion operator:
Ok, D33 Ok, pnlky) = -An ¢n

with the reflecting boundary conditions discussed in the previous paragraph.
The four eigenfunctions with the smallest nonvanishing eigenvalues are shown in
Figure 2. In addition, there is a constant eigenfunction with Ag = 0. The solu-

tion for the distribution in k, for a unit delta function at k,(0) at timet = 0is

p = L o™ palk) ga (ku(0)

1

which relaxes to the uniform distribution p = ¢f = 5
Kumaz

. The quantities
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< k,> and k, 4, are readily calculated from fk,,;o,, (k,)dk, and
Sk ¢n (k) dk, .
The calculated values of <k, > and k, o,y are as a function of time are

shown in Figure 3. These will be compared with the predictions of MW and of the

"exact" Monte Carlo calculations in later sections.
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V. MEISS-WATSON THEORY

Meiss and Watson's (MW) approach is based on an approximation for the
time displacement matrix U(t) defined by

<b(t)> = U(t)p(0) . (36) -

where b is the vector of test wave mode amplitudes, a formal solution for U

can be written as the time ordered exponential

H
UE) = T gy f e dten (37)

7 (<A a(ts) - 4 (tem) >)

where the A's are the individual interaction matrices consisting of coupling
constants, intensities of the background modes and factors relating the time
dependence of the interacting modes. The MW approximation consists of com-

muting the A's in Eq. 37.

The time ordered exponential is dominated by terms with

2n N typical eigenvalue of Z A(t')at (3)
which increases linearly with t. There are several ways to see that times equal
to the correlation time of the background as observed by the test wave system
are the maximum times of interest. The transport equation could be derived for
this time, and patched together using the independence of the background for
longer periods. Alternatively, the expression for U(t) could be used for longer
times, but the reordering necessary to derive the transport equation requires
two factors referring to the same background wave to be moved to adjacent
positions in the product. In order to accomplish this reordering, no factor need
be moved more than a correlation time. Thus, the carefully established result

that the Kubo number is the expansion parameter makes intuitive sense.

The A factors contain ei*, where A is the frequency mismatch
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A= -y £y (4)
The first two w's belong to test waves and the last to the background. By scale
separation, A can be written in terms of the group velocity of the test wave and

the phase velocity of the background as

A= 2o )- 7,000 (5)

The two A's to be placed adjacent have test wave wavenumbers k, k' before the
reordering, and equal wavenumbers after. Thus, the approximation of MW
includes the assumption that the test wave group velocity (especially in the vert-
ical direction) can be considered constant over a correlation time.

The transport theory resulting from the MW approximation differs from |
induced diffusion (ID) in two ways: MW did not completely make the scale
separation approximation and they retained an initial transient in the transport.

The part of the scale separation approximation MW refrained from making
was to take the limit that the change in k, in an interaction (which is the K,
of the background) is infinitesimal. As a result they end up with an integral
equation rather than a differential equation which, when specialized to transport

in k, alone, is

8 pliy) = 2 [ dK, dky' Glky k', K, 1) 6 (ky + K, - By)

e -pe)] (36)

If the remainder of the scale separation approximation is made, the integrand
except for the § function can be expanded in a power series in k,' -k,. The

constant term is not present and the linear term vanishes upon integration leav-
ing
B pky) = By, | [ dy K2 Glky, by, Kout) ) 04, (k) (37)

(where symmetry of G in its first two arguments is used). The expression in



-19-

brackets is to be identified as Dss. Using the MW expression for G it is identical
to Eq. (35) if ¢ is set to =.

Since the model used in this paper has scale separation built into it, we
expect this aspect of MW not to be significant. Indeed, we have solved the MW
integral equation with { set to = inthe expression for G, using a spectral tech-
nique. Graphs of the eigenfunctions ¢g, - - - . ¢4 are indistinguishable from these
of ID, and the eigenvalues were |

A = 0, A = 4.B6x 1079
A2

compared to the values

2.B86x 1073 Ag = B.42 x 1072 A\ = 1.386x 107F

0, 5.99 x 1078,
2.96 x 1072, 9.53x 1072, 1.38 x 107!
for ID. The graph of <k, > and k. is shown in Figure 4, and is seen to be

the same as for ID, as expected.

~

The other difference between MW and Ip is that G is time dependent. In
fact, the time dependence is exactly the same as retaining the lower limit of
integrationat t' = 0, ratherthanat# = -w inthe expression for the
diffusivity (Eq. (34), where ' = t - 7). Physically; the density in vertical posi-
tion of the test wave is initially uncorrelated with the shear, so the transport
cancels out in the ensemble average. As time proceeds, some of this correlation
develops, allowing net transport. Thus, as applied to our model, MW theory is

essentially a diffusion equation with a time dependent diffusivity given by
¢ 3
Daslky.t) = [ dt' <o, U(D,t,t) 0,0 (g, t'.t)> , (38)
(]

which is smaller than Dsg(ky, =) for small t.

The differences shown by MW (in their Fig. 2) between their theory and ID

are due to this initial transient. We present the difference in another way, based
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on the spectral decomposition of the diffusion operator. The eigenfunctions and
eigenvalues are now time dependent. It turns out that the t dependence of the
eigenfunctions is rather small; e.g. the overlap of ¢,(¢ = 0) with ¢;(t = «)is
90 percent. The eigenvalues are A,(t = 0) and asymptotically approach their
ID level. It is a reasonably goed approximation to treat the ¢, astime-
independent, making the solution for a unit §-functionatt = 0

- } A it)at
o Pnky) pnlky (0)) (39)

puYe
n

which, after the transient dies down is

pa e TR g k) gl (0)) (40)

The most significant nonzero eigenvalue is A, (t), shown in Figure 5. The
t

integral [ A(#)dt" is, for t > 0.22 inertial periods, ¢ - Ty with T = 0.032
0

inertial periods. Ty, T3 T, have the values 0.047, 0.072, 0.074.

Thus, as applied to the scale-separated regime, MW differs from ID only by
having the exponential approach to equilibrium postponed by a small amount of
time, about 0.03 inertial period, due to the assumed initial absence of correla-

tion of the test waves with the background.
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V1. COMPARISON OF ID WITH EIKONAL RESULTS

Up to this point we have concentrated on the consequences of mai&ng the
weak interaction assumption. That assumption leads to a diffusion equation, or,
if the MW theory is used, to a time dependent diffusion equation in which the ID
transport is somewhat postponed. In this section we test the weak interaction

assumption by comparing to the eikonal results, which are valid for our model.

The calculation of the eikonal results is described in detail in HP. The
method is to numerically integrate the deterministic eikonal equations in a ran-
domly constructed background flow. Ensemble averages are constructed by
averaging over a large sample of such backgrounds, always keeping the initial
conditions on the test wave the same. The eikonal results do nol show any cutoff
in k,, ; the weak interaction approximation has not been made, so net transport
does not require resonant kinematics. We have imposed an absorbing boundary
at a vertical wavelength of 5 m. This boundary is not particularly important for
the model we are using, but is more significant for the calculations reported in

HP.

The numerical comparison of the eikonal results with ID is shown in Fig. 8.
Very significant differences can be seen. The level of the k, s is about a fac-
tor of 2 greater than that given by ID, and takes considerably longer to become
established. <k, > has a longer time before beginning a possibly exponential
decay, and the decay is much slower than that of ID. The value of <k, > at the

maximum is much greater than given by ID.

Thus it must be concluded that ID is an inadequate representation of the
transport properties of our model. Since the MW theory resembles ID so
strongly, it too is inadequate. In the next section we examine the adequacy of ID

in the context of perturbation theory, of which it is the first term.
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VII. SECOND YAN KAMPEN TERM

We have seen in the previous section that there is a severe numerical
discrepancy between WNIT and eikonal results, and therefore that WNIT is
incorrect for short wavelength internal wave transport. This section is devoted
to showing that the same result can be obtained remaining within the framework
of perturbation theory. The convergence properties of perturbation theory can
be estimated by comparing the second order result to the first order resuit,

obtaining an estimate for the square of the effective Kubo number.

Comparison of first order theory to free propagation is not relevant; the
Kubo number is not isolated by such a comparison. We have tried te directly
estimate the Kubo number wilhout success, even knowing Lthe answer of this sec-
tion. The trouble is that the range of kinematic conditions of both test waves
and background waves leads to a large range of possible correlation and interac-

tion times. One does not know what sort of average to take.

Thus, an estimate of the second term is‘needed to be able to assess the con-
vergence of perturbation theory. The second order contains terms of the same
form as the lowest order, as well as new terms involving three derivations of the
density, and the initial transient effect discussed as the main difference between
MW and ID. The only part of this order we look at is the correction to the second
derivative term Dgg. The "size” of third derivative terms cannot be directly com-

pared to second derivative terms, and we wish to make a numerical comparison.

We have been able to calculate the correction to Dgg in two ways. One way
is a detailed rigorous calculation, presented in the appendix, which does not give
much insight into the physical pracesses involved. The other is a physically
motivated calculation in which terms are dropped with insufficient justification.

This calculation was originally intended to be a rough estimate, but we found the
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resuit to be identical with that of the detailed calculation The motivated calcu-
lation is presented below.

The correction to Dss arises because the force 3, U - £ acts along the
actual trajectory of a wavepacket, whereas [D approximates it by the force along
the straight-line trajectory given by the current group velocity. Van Kampen
(1974) suggests decomposing the correction into two parts, a part due to the
average corrections to the straight-line motion and another part which is what-
ever is left over, namely details of correlations between the current force and
the previous trajectory. It turns out that only the former contributes in our .

case,.

The correction can be calculated from
Ds = fd‘r <o, U0(z(t))sk0,0(z(t-7).t-7) k> (42)
(}

where z (¢t - T) is related to z(f) by both the straight-line motion and by includ-
ing the diffractive spreading of the ensemble of trajectories between these

times.

We rewrite Dgg in terms of the velocity spectrum S (X, Q). The 8,'s give
factors of K,; and the angular integration gives a factor of %. Therefore, equa-

tion 42 can be expressed as

D = [ X k2s (K. Dk a0 (43)

fd-r(cos [Q'r-}'q,z(t) +Kz(t-1)|>
0 .

The quantity z(¢) -z(¢ - 1) is
z(t)-2(t-71) = vy (E)T7+¢

where the first term on the right alone gives ID and ¢ is the correction. For the
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next order term we can expand in a power series in ¢, obtaining

2
Dag = foﬁS(K:-Q)d&dQ (44)
2
fd'rcos l(Q K,vg(8)T ] [ m]
The 1 gives ID and the #— the correction.

We evaluate <{2> as follows:

1}

-+ O\" D\" O‘ﬁ"
A
)

¢t -1) dr dv, () (45)

dr" By (t -77)

R
B!

ety oty

dr' 8, U(z -wgr', t -7") ek

Jar(r-m™ 8, U(z -y, t-7) ek
0
where §vu; is the change in group velocity due to the acceleration betweent -7

and ¢, and the straight line approximation suffices for z(¢ - ') . Thus

<E> = f"zim,?s(&,.n) dK, dQ fdrdr (48)
0

(r-7)Y(T-7")cos {(Q - K, ug) (T - ‘r")]
Putting this in equation 44, we obtain
Dsa-Dpp = -5 S (K, DK, a0 [K2S (K, 0)dK,d0 (47)

fd'r fd‘r' fd‘r" (r-m)(r-7)
) ) 0

cos [(Q-[Qvg)'r]cos {(Q‘ - Ky ug) (7' --r")]

The integrand is symmetric in 7, 7'. Therefore a factor of two can be absorbed

in nesting the 7, 7 integrals.
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The integrals in Eq. 44 are done partly analytically and partly numerically.
If we were to use the sharp cutoff in X, the extra factors of 7 -7, 7- 7' would
cause the correction to be extremely singular; therefore we smooth out the

cutoff in order to draw a graph. We use

S(%,. Q) = Seu(Ky. Q) e /% (48)

where K; is the previous cutoff value of X,, and Sgy is the Garrett-Munk spec-

tra.

The numerical evaluation of ID and the correction, with this cutoff spectrum
are shown in Fig. 7. Itis clear that the correction is not small compared to ID
and that the induced cutoff is not respected. Thus perturbation theory shows no
signs of convergence. This result is entirely consistenl with that of the previous

section in which it was shown by comparison to the eikonal that ID is inadequate.

Presumably, higher order corrections are also large and higher derivative
terms also make a significant contribution. One must conclude that there is no

reason that ID has any relationship to the actual transport of the model.
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VIII. CONCLUSIONS

We have demonstrated that induced diffusion, and its refinement to Meiss-
Watson theory, do not correctly describe the transport of small scale internal
waves in a simplified model of the ocean IW field. Both comparison with the

eikonal theory and the direct calculation of corrections give this result.

The reader may be concerned over whether the results for the model
extend to the real ocean. There are three issues involved. First, we have made
a number of simplifying assumptions. These simplifications change the quantita-
tive features of the graphs we have drawn, so one should not apply these graphs
as representing transport in the ocean. The question of the validity of weak
interaclion theories should not, however, be parlicularly influenced by the

simplifications.

The second issue concerns the adequacy of the description of the ocean by
the Garret-Munk spectrum. Again, there might be quantitative features in the
transport which depend on IW properties not included in the Garrett-Munk
model. However, it does not seem that these features could make ID work, since
ID involves only a gross smearing of IW properties, which Garrett-Munk certainly
does well with. In contrast, the transport as described by the eikonal does seem
to have some sensitivity to more subtle properties of the IW field, and the ques-
tion of the adequacy of the model for the background as applied for the actual

transport is not resolved.

The third issue concerns the background cutoff we made in order to avoid
confusion with the question of scale separation. This issue is tricky because the
higher wavenumbers whicﬁ we neglected introduce both interaction times and
correlation times which are shorter. The part we have included is still a major

part of the transport, and the imposition of the extra interactions actually
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lengthen the correlation times for this part, since they cause there to be more
high wavenurmnbers in the test wave ensemble, with correspondingly smaller

group velocities.

Since weak interaction theory is not applicable to this part, it is not reason-
able that by adding a moderate amount of extra interaction, the interaction
should become weak {as measured by the effective Kubo number). Thus, even if
the higher order terms were unchanged by the introduction of the higher
wavenumber background, the lowest term would have to increase very

significantly in order to dominate.

Therefore, it seems reasonable to us to extrapolate to the realbocean our
result that weak interaction transport gives wrong results for small wavenumber
transport, and some other method, such as Monte-Carlo simulations, is required.
Pending the outcome of a study of the validity of the scale separation approxi-
mation, the eikonal representation is a good way to immplement such calcula-

tions.

Our finding that weak interaction theory is not valid in one kinematic
regime raises the question of its validity elsewhere. It would be prudent to
examine the corrections to weak interaction theory in the remaining regimes.
Intuitive feelings about its validity tend to be based on the comparison of
interaction times with wave periods, rather than on the correct comparison with
correlation times. Perhaps the estimate of the second van Kampen term will be

no harder than in our regime.

Wright (private communication) has pointed out that whenever weak
interaction theory is valid, the direct interaction theory will agree with it. When
it is wrong, the DIA will disagree with it and possibly be wrong itself. It turns out
that DIA disagrees with weak interaction theory over a major part of phase

space.
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The physical phenomena which happen when transport is controlled by
strong interactions has yet to be elucidated. Rather than thinking of Markov
processes in the phase space density, one should think of large correlations and
such phenomena as dominance of transport by approximate critical layers, as
suggested by Henyey and Pomphrey. The future of internal wave physics

involves new concepts as well as more calculations.
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APPENDIX 1

EQUIPARTITION OF ACTION AND THE STATISTICAL MECHANICS

OF INDUCED DIFFUSION

Consider the statistical mechanics of induced diffusion. Energy is
conserved, and in a linearized treatment of the test waves, so too is the action.
Llet £; and A; denote the energy and action in test wave mode j. Then the
probability density for wave action (in a grand canonical ensemble) is
g exp( - B E; + pdj). Here, B isthe "inverse temperature” of the system, u is
the "chemical potential” for test wave action, and g is a normalization factor.
Thus, the expectation of the test wave action is

1

<>y = g_‘/’—dA,-'A,-‘eXp('ﬁE',- + pd;) = Bo; v a8

. (A1)

while the background waves have

<hi>p = ﬁ : (A.2)
The development of induced diffusion as a kinetic theory has ignored the
eflect of the small scale test waves on the background, since the background is
much more intense than the test wave field. Thus, built into the theory is the

assumption that

<Aj >y K <Aj >pe

In fact, the test wave action should be infinitesimal compared with the back-

ground action. Thus fwry < 4 and <4;> = L . independent of j; i.e. action is

7

equipartitioned. The dominance of fwry over w would have given the contrary

(familiar) result, that energy is equipartitioned.
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APPENDIX 2

DETAILED CALCULATION OF THE SECOND VAN KAMPEN TERM

We show that the expression 47 for the correction to the vertical
wavenumber diffusivity that we obtained in an imprecise way in section 7 is
identical to that derived more carefully. The careful derivation here does not

reveal the physical mechanism responsible in as simple a way.

We use the fact that the interaction operator in equation 28 is the Liouville
operator L'(t) inthe interaction representation (relative to the current time
t). L' isthe Liouville operator of the interaction representation Hamiltonian

which is the Doppler shift
H(t-7) = Uz -yy1, t-7)ek (A.3)
The Liouville operator is

L'(t-7)

3, H'0y, -0, H'0,

8, Dk (8, -8k, vy 70;) (A4)

where horizontal coordinates have been suppressed, since we ignore horizontal
dependence of the background. We will have occasion to use the commutator of
two L' operators, which is the operator associated with the Poisson brackets of

the two A' functions:

EH'(t -1, H' (t -1'2); = -9, U(z -T1Yg . t -T) ek

6, U(z 'Tz‘l/n - T2) . E a,‘v’ug (Tl ‘Ta) (AS)

which we abbreviate as

{H'WH'2 = -8, U«k 8, D20k ‘ggk;L(Tx‘Ta) (A.6)

The second order term involves four L' operators, correlated in pairs. We use
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a's to denote one pair and b's the other, and put subscripts 1, 2, 3, 4 to denote
the time ordering ¢t -7, < t-T3 < £t -7z < t -7, = t. The induced diffusion

operator is, with this notation
dp(t) = [drza; ag (A7)

The solution of ID involves the time ordered product of d's, but the time
integrated over in defining Djp cannot be ordered, since D is not a function of

it. Therefore the solution of ID contains the 7 integrals of:

@ agbab,+a,a3b.0,+a,a,byb4
While the ensemble average of the true solution always has correct time order-
ing:

a,apbgb, +a,bpa3b, + 2, bbga,

The correction d; to ID is the difference between these, so that d; applied once

replaces djp applied twice with the correct four-L' term. Therefore:

dredTsd Ty [0-1[52. as]lby + a;[babg, 0-4]]
°<"'z<"3<"4

dz

dredT3d T, [Gl[bz- aglby+ a bz b3 a,] + a,[by, '14]53]
0<ra<ry<7,

drpdrsdr, [31(bz aslbs+ Bed-aibala, b]]  (AB)
O0<Tp<ry<Ty

The second and third terms are the part discussed in section 7 {as can be seen
from the first form of d,), while the first term is the "what's left" term which we

asserted gave no contribution to Dgs.

Each a; or &; consists of a phase space velocity

vpsj = (8, Uj <k, 7 Bk, vg 02 U; < k) (A.9)
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contracted with a phase space derivative, dps = (6,,“, 8;). By Liouville's

theorem, the derivative can appear either to the right or to the left of vpg ;.

since phase space is incompressible.

We now evaluate the first term. dps is put to the left of ups, ; in a;. Ina,

only the term 3, U, ok 8k, contributes, since we are not looking at terms which

have a 3; on the right.
[az, as] is of the form
Ops tH's H's} 8ps = Ops(——=) 0; Usk dps (A.10)
(involving the antisymmetric part of the 8's.)
Thus the only part of the first term which can appear is

O, (—=) <8, Uzek 8ps 8, UseE> 0y,

The 8ps acting on the 3, U, « € gives <3, Uz+k 820,k > in this term, which
vanishes by the assumed up-down symmetfy of the GM spectrum. Therefore the

term becomes
0, (=) 9,
which is the form in which we call a term a third derivative term (i.e., the flux is
proportional to a second derivative of the distribution). As we are interested
only in second derivative terms of the form
akv (-"'—) abv [
The first term in A.8 does not contribute to Dsa.

Since the second term is the same as the first, except that indicies 3 and 4

are interchanged, it also does not contribute to Das.

The third term is

B du - R R
-8, 0, Ok [a,;" + Taa—ki—a,] 8, ﬁa-k[a,m 3 H 'y} B, -8 {H '3 H'y a,]
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with the u, correlated to u, and uj; correlated to ug. The term in the last

parenthesis with 8, is discarded as not contributing to Dgs. The 8; cannot act

on the 4, Ugek in {H's, H'y} because of the up-down symmetry when correlat-

ing vz and ug. We already have a 8, on both left and right; therefore the 3,

must act on 8, 2.+ k. In order that the up-down symmetry not give zero in the

u, -u, correlation, the remaining differential operator must also act on

8, Uys k. Therefore, the relevant part is (removing the 8 's from left and right)

6D33 = 'deng3d74 <az 32'}36: ﬁs'E>
. dv . dv
<6, ﬁl'k [6kv+‘r2 ak.,g, 6,] 6,2 a4‘k>(7’3'74) Bk.:

- [ dradredr, <0, U;+Ko, UgeE>

s - > 5‘0 dv,
Ko, U ek 330k > (T2-Td) #(Tg"&) EEVL )

(A.11)

This last form is then, by Fourier transforming the correlation functions, the

same as equation 47.
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Figure 1. Diffusivity Dsg (Eq. 35) as a function of vertical wave number k,,.

Resonant kinematics and a finite background cut-off at

K, = 17.8km! implies the vanishing of D33 beyond k, = 1i3km~%
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The four lowest eigenfunctions gn{k,) of the diffusion operator (Eq.
38). At long times only small eigenvalues and corresponding eigen-
functions are important. These determine the distribution of action

in wavenumber space.
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Figure 3a. Calculated value of <k,> as a function of time for induced
diffusion.
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Figure 3b. Calculated value of kyns(t) for induced diffusion.
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Figure 4a. Comparison of <k,> versus time for induced diffusion and for
Meiss-Watson. The slight difference between the curves in due to an
initial transient that MW take into account.
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Figure 4b. Comparison of k, s versus time for ID and for MW. The predicted
spreading of a wave packet is essentially the same in the two
theories.
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Figure 6a. Comparison of eikonal prediction of <k,> versus time with induced
diffusion. The eikonal decay is much slower than that of ID, and it is
significantly delayed.
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Figure 6b. Comparison of eikonal prediction of k, ns Versus time with induced
diffusion. The eikonal predicts a much higher level of k, s than

4 does ID, and saturation takes considerably longer. Since the eikonal

is "exact” for the model calculation, it is concluded that ID is inade-

quate.
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