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Abstract

The bootstrap fraction, I;,/I,, and the shape of the bootstrap current
density, Ji,(r), can depend sensitively on the shape of the plasma profiles.
Beginning with Hirshman’s form for the bootstrap current density, and mak-
ing a large aspect ratio expansion (proceeding two orders in the square root
of the inverse aspect ratio, €), we derive an expression for the bootstrap frac-
tion of the form I,,/I, = €/28,Cs,(cn, a1: @y, Z, €) which depends explicitly
on the peakedness of the density, temperature, and current. Examination of
contours of constant Iy,/I, in the space of an, ar and consideration of the
shape of the bootstrap current density help identify operating regimes for
tokamaks which optimize bootstrap current drive.
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I. Introduction

The possibility of using bootstrap current to decrease the external cur-
rent drive requirements for tokamak reactors was first discussed by Bickerton,
Connor, and Taylor! in 1971. Yet definitive evidence for substantial produc-
tion of this current drive in tokamaks was not obtained until 1988 when its
existence was confirmed in TFTR,? and shortly thereafter on other major
tokamaks.>®

The improved ability for tokamaks to explore plasma regimes with aug-
mented bootstrap current drive has motivated a number of recent publi-
cations which calculate the size of the bootstrap current in tokamaks.” 2
The present paper is a contribution which makes explicit the dependence of
the bootstrap fraction I,,/I, on parameters a,, ar, and «; describing the
peakedness of the density, temperature, and equilibrium current profiles. In
Sec. II. we derive an expression for Cys(an, ar;as,€,2) = (Ls/1,)/(€/23,),
a coeflicient which relates the bootstrap current fraction to poloidal beta, 3,,
at a given inverse aspect ratio, e, effective charge, Z, and equilibrium profile
parameters a,, ar, and «ay. To obtain C,, we perform a large aspect ratio
expansion of Hirshman'’s collisionless form for the bootstrap current density??
and proceed through two orders in \/e. Similar analyses were presented by
DeVoto et al.® and Pustovitov,® who retained only the first order terms, and
showed tabulated values of C}, for selected profile parameters. However, the
first order results can be shown to be inaccurate, especially when the density
profile is flat so that a, =~ ar. Contour plots of Cy as a function of «,
and ar for fixed €, Z, and various a; are presented in Fig. 1 and provide a
comprehensive survey of this bootstrap coefficient.

It is desirable to operate tokamak reactors at high plasma beta, 3, as well
as with a high bootstrap current fraction, /s,/I,. However, since the poloidal
beta, B,, at the Troyon limit is inversely proportional to 3, and since the
bootstrap fraction is proportional to B,, the desires for high B and high
Iys/ I, compete with one another.!?1* It is natural, therefore, to consider the
dependence of the bootstrap fraction I,,/7, on profile parameters at constant
beta. To do this, we absorb the current profile dependence of 3, into the
coefficient Cy,, express 3 as a fraction of the Troyon limit, and contour the
resulting expression for [,/I, at a fixed fraction of the beta limit (see Fig.
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The benefits of achieving high values of I;;/I, cannot be realized unless
the shape of the bootstrap current profile is close to some desirable equilib-
rium current profile. Since the bootstrap current density, Jis, vanishes at the
magnetic axis, a positive seed current must be supplied near the plasma axis
by an external current drive scheme if a stable equilibrium current profile is
to be obtained. In addition, the vanishing of the bootstrap current at the
plasma edge implies the existence of a maximum of J,, at some intermediate
radial location. It follows that if I,,/1, is close to unity, then, unless the turn-
ing point location for J,, is near the magnetic axis, bootstrap “overdrive”
in the region of the turning point is unavoidable (see Fig. 3), requiring the
external current drive scheme to drive negative current near the bootstrap
maximum. Clearly, “desirable” bootstrap current profiles which minimize -
the external current drive requirements will generally have maxima close to
the magnetic axis. In Sec. IIl. we consider this alignment problem, and
derive the dependence z:(an,ar) of the location of the bootstrap turning
point on profile parameters, so that contours of z; can be superimposed on
the contours of constant I4,/I,. Thus, in a single contour plot, such as Fig.
2, we obtain information on both the magnitude and shape of the bootstrap
current profile.

Finally, we remark that Boozer!®!® has recently argued that poloidal flux
production by tearing mode activity near the center of a bootstrap driven
tokamak with I,,/I, =~ 1 may be sufficient to sustain the plasma current
without the need for an externally driven seed current. Efficient dynamo
action would also require a bootstrap profile, Jys(r), which peaks close to the
magnetic axis.

II. The Bootstrap Fraction I,,/I,

Our starting point is Hirshman’s expression!” for the flux surface averaged
parallel bootstrap current density, which is valid for zero collisionality, and
arbitrary aspect ratio:
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Ay = f(0.754 + 2.21Z + Z?) + f3(0.348 + 1.24Z + Z%),
A, = f(0.884 +2.072),
D =1414Z + Z* + f(0.754 + 2.657Z + 2.0Z?)
+ £3(0.348 + 1.243Z + Z?). (1)

Q; = —

Here, p., p;, T., and T; denote the electron and ion pressure and temperature
associated with each flux surface, derivatives are with respect to the poloidal
flux within a given flux surface, Z is the effective plasma charge, and f is
the ratio of trapped to circulating particles on a flux surface.

To derive an analytic expression for the total bootstrap current, we make
the following simplifying assumptions:

(SA].) Te = T{,
(SA2) Pe = Pi,

(SA3) Assume a large aspect ratio expansion, use the model field variation
B = By(1+r/Rcos )~ to calculate the trapped to circulating particle frac-
tion, and retain the leading two orders in the square root of the local inverse
aspect ratio to obtain!”

f =1.46\/r/R + 2.40r/R. (2)

(SA4) Assume that the temperature, pressure, and total toroidal current
profiles have the parabolic form o = oo(1 —r%/a?®)*, where ¢ = T', p, and J.



Then
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g2=4

T = 7‘2/(12, (4)

and the coefficients Z,, ,, and Zr, 1, are cumbersome algebraic functions
of the effective charge, Z, which are accurately represented by the rational
approximations:

_13.93 +7.89Z

Zr 5.55Z —1 °
7 _34.37+0.632
hi 811Z -1
7 5.11 -1.177
P 2212 -1
12.51 — 0.34Z
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Defining the total bootstrap current by
(J-B)y,
*T o R(B-V) (©)

leads to the desired expression for the total bootstrap fraction,

Ibs/lp = 61/2ﬂpc;bs- (7)
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Here
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The strategy which leads from Eq. (1) to Eq. (7) involves specifying the
total equilibrium current profile. The motivation behind this strategy is that
MHD stability should determine the choice of desirable current profile. Once
J(r) is specified, the coordinate transformation dy/dr = (1/r) [rJ(r)dr
which converts flux derivatives to radial derivatives in Eq. (1) is easily de-
termined. The result, expressed by Eq. (7), is a linear relation between the
bootstrap current, Iy,, and poloidal beta. The difference,

Jseed(r) = J(T) - Jba(r)a (10)

between the specified equilibrium current density and the calculated boot-
strap current density defines a seed current which must be provided by some
external current drive scheme. Depending on the shape of Ji,(r), the exter-
nal current drive requirements may or may not be severe. The minimization
of these requirements is discussed further in Sec. III.

A different strategy for calculating the bootstrap current has been con-
sidered by lacono and Bhattacharjee.!? Rather than assuming a form for the
equilibrium current profile, these authors assume that the external current
drive scheme provides a constraint on the shape of the seed current profile,
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Jseea(r). Consistent with this constraint, the flux coordinate transformation
is written as dy/dr = (1/r) [ r(Jseed + Jbs)dr. As a result, the dependence
of 3, on Iy, is quadratic, rather than linear.

The lowest order (ie., \/¢) terms in the expression Eq. (7) for [,/ I, were
obtained previously by DeVoto et al.,® who presented tabulated values of the
(G, integral for selected values of o, and a;. The reason for including the
order € correction in the present calculation is a cancellation between Z,, and
Zr, which increases the relative importance of the order € terms when the
density profile is flat so that ¢, &~ ar. For example, when the effective charge
has the value Z = 2.0, we obtain Z,, = +2.94, Z7, = —2.34; Z,, = —0.81,
Zr, = +2.71. For the density, temperature, and current profile parameters
an = 0.5, a7 = 1.0, and oy = 1.0, and for inverse aspect ratio ¢ = 0.22. we -
find Cis = 0.54. Of this total, 22 % is the order € correction. On the other
hand, for a,, = 0.1,ar = 1.0, and ay = 1.0, Cy; = 0.42 out of which 43% is
the order e correction.

Figure 1 shows contour plots of the bootstrap coefficient Cy, as a function
of a, and a7 for various values of the current profile peakedness parameter,
ay. Here, the inverse aspect ratio and the plasma effective charge were fixed
at the values € = 0.22 and Z = 2.0, respectively. For the assumed parabolic
current profile, an exact expression can be obtained which relates a; to the
plasma internal inductance, £;. Thus,

__ 2 i 2 |
4 = a233(a)/o rdrB? (11)
= 2W(ay +2) — (20, +3) — Y1), (12)

where ¥(z) is a Di-gamma function.’® To avoid the necessity of a Table
look-up, we may Taylor expand the ¥ functions about a; = 0 and obtain

the following Pade approximation to the internal inductance of the current
profile:

l [1 + 1.1918aJ}

i~ 5 T701918a, (13)

For the values of a; used in the Figures, evaluation of ¢; gives

Qg 0 1 2 3
¢; 0.50 0.92 1.22 1.45




It is also useful to relate the current profile parameter a; to the shear pa-
rameter q*/qo, where qp is the axis value of the safety factor, and ¢~ is the
edge safety factor with definition

. 2ma®B {1+ &?
Then
q"/q0 = Jo/(J)
=ay+1. (15)

The dominant trends seen in Fig. 1 are (i) At constant ay the coefficient
Cs Increases with increasing density peakedness, and (ii) At constant ¢, and
at, Cys decreases with increasing current peakedness. For example, with oy
and o fixed at nominal values 1.0 and 1.5, respectively, Cys increases from
0.41 to 0.66 when ¢, is increased from 0.0 to 1.0; and with a, and ar fixed
at the values 0.5 and 1.5, respectively, Cys decreases from 0.86 to 0.46 when
ay increases from 0.0 to 2.0.

For contour plotting the function I,/1,, it is convenient to fold the profile
dependence of poloidal beta into the profile dependence of Cy;. To do this
we express the toroidal beta as a fraction, f, of the Troyon beta limit:

B = fBTroys (16)
where
3 oo Iy
}3Troy - CT407{' G.B’ (17)

and Cr is the Troyon coefficient. Then Egs. (9), (14)-(17) give

B, = 0.05fCrqoe (s + 1), (18)
and the bootstrap fraction, Eq. (7), becomes

0.0SfCT(I()
e

8

Ib,/Ip = (aJ + 1)01,,. (19)



Figure 2 shows (solid) contours of the right hand side of Eq. (19) for
selected values of a; and the restriction fCrgo = 3.5. This corresponds to
the evaluation of the bootstrap fraction at a nominal beta limit f = 1, with
qo = 1 and a Troyon coefficient Cr = 3.5. However, since the right hand side
of Eq. (19) is linear in fqo, it follows that the value of I,,/I, can be read
from Fig. 2 for any 3 or ¢o by application of a linear scaling. A discussion of
the results shown in Fig. 2 is given in the next Section.

III. Bootstrap Current Alignment

To realize the potential benefits of operating with a bootstrap fraction
Iys/ I, near unity, the bootstrap profile must have an appropriate shape. For
example, suppose we want to produce a (total) current density profile with a
predetermined shape, such as shown in Fig. 3. If the dominant current drive
is to be bootstrap, it would clearly be undesirable to generate a bootstrap
current density, Jis, which peaks near the plasma edge, as in Fig. 3(b). If this
were so, some other means of current drive (such as lower hybrid, etc.,) would
not only have to supply the current deficit at the plasma center to obtain the
desired total profile, but also would have to provide reverse drive near the
edge. A more desirable shape for the bootstrap current density is shown in
Fig. 3(a), where the peak in Ji, is seen to occur near the plasma center. In
this case, the additional current drive needs to be driven near the center, and
is predominantly unidirectional. We would like to determine which regions
of parameter space correspond to “desirable” bootstrap profiles in the sense .
of Fig. 3(a).

For the parabolic profiles of density, temperature, and current density
assumed in this paper the bootstrap current density is constrained to vanish
at the origin (r = 0), the plasma edge (r = a), and has a single maximum at
some intermediate radial location. This implies that once the magnitude of
the bootstrap current is specified, the shape of Jy, can be characterized by
a single parameter, namely the location of the turning point, z;, such that
dJys(z¢)/dz = 0. If the total bootstrap fraction is close to unity, we may
identify small z; as being desirable and large z; as undesirable.

It is convenient to derive the dependence z;(ay,, ar) on the profile param-
eters a, and ar for a given ay; so that contours of z; can be superimposed
on the plots of Iy,/I,, thereby providing information on a single plot of both



shape and magnitude of the bootstrap current. The condition for z,, ie.,
" that the derivative of the right hand side of Eq. (3) vanishes, can be easily
derived. Inspection of Eq. (3) shows that if the order € terms are neglected
and ay is fixed, then lines of constant z, are parallel to lines of constant .
(Such lines would have slope = —1 in Fig. | and Fig. 2). Including the order
¢ terms skews the alignment of r, with «, (because of the a7 dependence),
particularly at small a, when these terms are large. However the skewness
is small, as can be seen in Fig. 2, where the dashed lines are exact contours
of z{an, ar).
From Fig. 2 various trends are evident:

With regard to the magnitude of the bootstrap fraction at the beta limit.
(T1) For fixed density and temperature profile shapes, the value of I,,/1,
increases with increasing ay. This contrasts with the trend for Cj,, showing
that the dependence of Cj, on the current profile shape is weaker than oy +1.
For example, with a, and ar fixed at the values 0.5 and 1.5, respectively,
the bootstrap fraction at the nominal beta limit increases from I,,/I, = 0.32
to fys/I, = 0.51 when a; increases from 0.0 to 2.0.

(T2) For any fixed current profile shape, the value of the bootstrap fraction,
Iys/I,, increases strongly with increasing a,. The variation of I;,/I, with ar
is extremely weak. For example, consider a reference state with a, = 0.5,
ar = 1.5, and ay = 0.0. Then increasing o, from 0.5 to 1.0 increases [;//,
from 0.32 to 0.40, while increasing ar from 1.5 to 2.0 increases I,,/I, from
. 0.32 to 0.34. Similarly, if the reference state has a more peaked current pro-
file with a, = 0.5, a7 = 1.5, and a; = 2.0, then increasing «a, from 0.5 to 1.0
increases I,/ I, from 0.51 to 0.60, while increasing a7 from 1.5 to 2.0 keeps
Iys/ I, at the value 0.51.

With regard to the alignment of the bootstrap current profile,

(T3) For fixed current profile shape, the bootstrap profile peaks at smaller
minor radius as «, is increased, whether by increasing a, or ar.

(T4) For fixed oy, the bootstrap current profile peaks at smaller minor ra-
dius as ay is decreased.

It is interesting to note that the desire to minimize the external current
drive requirements for tokamak reactors implies a desire for large I;,/I, and
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small z,. We are led, therefore, to a need to compromise between the trends
(T1) and (T4)). Also, with regard to the possibility of an essentially 100%
bootstrap driven tokamak, we note that the I,s/I, = 1.0 contour has not
entered the plots even when oy has been raised to 3.0. To obtain Iy;/I, = 1.0,
we need to assume fCrge > 3.5. Operating in the Second Stable region,
where fCt > 3.5, and qo > 1.0, offers a possible solution, as can be seen
from Fig. 2 by the linear scaling of the contour levels of I;,/I, mentioned at
the end of Sec. 2. ‘

IV. Comparison of Results with a Fully Toroidal Equi-
librium Calculation

In order to test how well the formulas Eq. (7) and Eq. (19) can repro-
duce the output from a fully toroidal MHD equilibrium code, we present a
comparison of results in Table 1 and Figs. 4 and 5. Four MHD equilibria
corresponding to different choices for the input profiles J(z), p(¢) and T(3)
were computed using the Princeton JSOLVER equilibrium code. Each input
profile is a two-parameter function of the poloidal flux, ¥, of the form

a’3(4) = o (0)(1 — ¥*)°, (20)

with ¢ = J, p, and T. The variation of b, in addition to a, allows tailoring
of the profile shapes. For the calculations, the major radius, minor radius,
elongation, and triangularity of the outermost flux surface were fixed at the
values R = 2.25 m, ¢ = 0.5 m, (l.e., € = 0.22), « = 2.0, and § = 0.5. The
toroidal magnetic field was B; = 3.3 T. Once an equilibrium is calculated,
the bootstrap current density on each flux surface is evaluated using Eq. (1)
with T, = T}, p. = pi, and Z = 2.0. The current density is then integrated
over the flux to yield the total bootstrap current, Iy,.

To evaluate the approximation given by Eq. (7) for the bootstrap fraction,
values for the profile exponents a, (¢ = p, T, and J) which provide the one-
parameter description of the model profiles are needed. For this purpose, the
identification

a; = 0(0)/(a(s)) -1 (21)

is made, where the peak-to-average ratios on the right hand side are taken
from the output of the equilibrium runs. In a cylinder, Eq. (21) is exact for
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parabolic profiles of the form (SA4). The peak-to-average ratios, together
with the poloidal beta, Troyon coefficient, central and edge safety factors,
and total plasma current, are presented in Table 1. The value of Cs given
by Eq. (8) is also presented, using the prescription in Eq. (21). The final
two columns of the Table show the bootstrap current fraction calculated by
the equilibrium code, and the fraction obtained by evaluation of Eq. (7). In
spite of the considerable variation in profile parameters, excellent agreement
between the JSOLVER and model expressions for It/ I, is found in all cases.

Figure 4 shows JSOLVER equilibrium plots of the equilibrium and boot-
strap current profiles J(v)/J(0), and Jps(¥)/Jps(0), respectively. The poloidal
flux is normalized in the plots to equal unity at the plasma edge and zero at .
the magnetic axis. For comparison, Fig. 5 shows plots of the model profiles
J(z)/Jo = (1 — )%’ and Jis(z)/Jss(0) obtained from Eq. (3). The chosen
abscissa is ¢ = r?/a?, so that, as in Fig. 4, the area under each curve is the
total current. In addition to the agreement between the integrated bootstrap
current profiles evidenced in Table 1, the model bootstrap profiles shown in
Figs. 5(a), (c), and (d) show substantial agreement in shape with the MHD
equilibrium profiles (see Figs 4(a), (c), and (d)). However, when comparing
Figs. 4 and 5 we should be aware of the missing Jacobian factor dv/d(z)
which relates the absissae, and that the one-parameter description of the
model plasma profiles using Eq. (21) can sometimes lead to significant de-
tailed differences. Thus, for example, the solid curves in Figs. 4(a) and 5(a)
show a different radial dependence of the equilibrium and model J profile
shapes, particularly near the plasma center. More apparent is the difference
between the bootstrap current profiles shown in Figs. 4(b) and 5(b), where
the equilibrium code evaluation of Ji,(%) shows a much smaller value over a
substantial region near the origin than does the model calculation. In this
case, the difference can be traced to the fact that the two-parameter dec-
cription of the pressure profile for the exact equilibrium calculation is poorly
described by the single moment described by Eq. (21): The pressure gra-
dient for the equilibrium calculation near the magnetic axis is considerably
weaker than the single moment description predicts, leading to a substan-
tially smaller local bootstrap current drive.

To illustrate the use of Figs. 1 and 2 for modifying operating scenarios,
we note that although the range of bootstrap current fractions appearing in
Table 1 spans a wide range (from approximately 0.4 to 1.0), the variation is
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almost entirely due to differences in §3,. In fact, the bootstrap coeflicient Cy,
only varies between 0.43 and 0.47 for the four equilibrium scenarios. Now
suppose that scenario (d) is perceived to be too aggressive from the point of
view of 3, yet the value of I,/ I, is required to be held fixed at approximately
unity. Then we note from Fig. 1 that increasing the density peaking factor
from a, = 0.06 to a, = 0.5 has the effect of increasing C,, by 20%. Thus,
B may be lowered by 20% at no expense to the bootstrap fraction if this
modification to the density profile can be realized.

V. Summary

Contour plots of the bootstrap coefficient Cy, = (Iys/1,)/€"/?3,, and of
the bootstrap current fraction I,s//, evaluated at the first stability beta limit,
have been presented in Figs. 1 and 2 as a function of density and temperature
peaking factors a, and ar. These comprehensive plots are shown for fixed
effective charge, Z, and inverse aspect ratio, ¢, and various current profile
peaking factors, ay. The trends displayed in the figures can be used to
identify possible operating regimes for tokamak reactors which make efficient
use of large bootstrap fractions.

Major trends show that the values of C, and of Iy,/1, at the beta limit
increase strongly with increasing c, This clearly shows the benefit of be-
ing able to peak the density profile. Also, the location of the maximum of
the bootstrap current density moves to smaller minor radius when the pres-
sure profile is peaked, either by increasing a, or by increasing ar. Causing
the bootstrap current to peak at small radius is important if the bootstrap
current fraction is desired to be near unity, since otherwise a substantial
bootstrap overdrive in the vicinity of the bootstrap maximum will result,
and the requirements of an external current drive system which must in any
event provide a plasma seed near the axis will be increased.

Finally, while the value of Cj, decreases with increasing ¢, the value of
Iys/I,, at any fixed volume averaged beta, increases with increasing current
peakedness. This desirable effect, however, competes with a trend for the
location of the bootstrap maximum to move to larger minor radius when oy
1s increased.

Despite the clear trends which emerge from the zero-dimensional analysis
which gave rise to the Figs. 1 and 2, it is important to note that the attempt
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to use the figures to optimize the use of large bootstrap current fractions has
neglected the important issue of MHD stability. However, the above analysis
should provide a guideline for a more thorough two-dimensional equilibrium
and stability treatment.
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Table 1: Profile Parameters and Bootstrap Fractions for Four Equilibria.

n J-B ; I § ¥ t
((71-0) TT(TE)l B(%Q)l (J—éo)l ‘dp ﬁT‘ioy qo qe Ip Cbs IbS/IP Ibis/[P
[MA]

1.86 3.82 483 398 0.64 0.64 071 1079 1.21 044 042 040
1.41 2.08 237 243 065 094 1.02 595 1.50 048 0.53 0.52
1.49 2.57 3.14 3.41 0.89 085 1.02 11.59 1.00 043 069 0.63

1.06 3.65 3.72 2.09 133 1.13 2.0l 1067 0.89 047 096 1.02

§ Assumes Cr = 3.5 in Eq. (17).
t JSOLVER output.
1 - From Eq. (7).
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Figures

FIG. 1. Contour plots of the bootstrap coefficient Cys (Eq. (7)) for various
values of ay, and fixed € = 0.22, Z = 2.0.

FIG. 2. Contour plots of the bootstrap fraction Is/ I, evaluated at the beta limit
as a function of a, and ar for various values of oy, and fixed ¢ = 0.22,

Z =2.0.

FIG. 3. Schematic picture of “desirable” and “undesirable” bootstrap cur-
rent profiles Jj,.

FIG. 4. Plots of the total equilibrium current density (solid), and bootstra.p-
current density (dashed) calculated using the JSOLVER MHD equilib-

rium code. Abscissa is poloidal flux.

FIG. 5. Plots of the total current density, J/Jo = (1 —r%?/a%)*’, and approx-
imate bootstrap current density, Ji,/Jo from Eq. (3).
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