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FALL MEETING

SciDAC Center for Gyrokinetic Particle Simulation 
of Turbulent Transport in Burning Plasmas

Room 407-408
Philadelphia Marriot Hotel, Philadelphia, PA

November 2, 2006

7:00P  Lee - Opening remarks 

7:10P  Wang - Shaped plasma simulations and future plans

7:25P  Ethier - GTC performance and optimization issues

7:40P  Lin - Status and plan in global GTC turbulence simulation

7:55P  Nishimura - Shear Alfven wave studies in electromagnetic global gyrokinetic
simulation of tokamak plasmas

8:10P  Parker - ETG Convergence Studies, GEM Team status 

8:25P  Y. Chen - The growing weight problem

8:40P  Rewoldt --  Application of GEM code for experimentally-realistic tokamak cases 

8:55P  Hahm - Theory team status and plan

9:10P  Coffee break
 
9:25P  Holod - Particle noise-driven flux in GTC simulations 

9:35P  Xiao - Theory of zonal flow residual level with arbitrary wavelength and collisionality

9:45P  Jenkins – Particle noise issues

9:55P  Diamond – Concluding remarks 

10:05P Klasky - Data Management, Visualization and MPP issues 

10:15P Plans for re-competition

11:15P Recess 
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Invited Talks and Review Papers
• Wang, W.X., T.S. Hahm, G. Rewoldt, J. Manickam and W.M. Tang, “Gyrokinetic studies of 
Nonlocal Properties of Turbulence-driven and Neoclassical Transport”, 21th IAEA Conference 
on Plasma Physics and Controlled Nuclear Fusion Research, (Chengdu, China, 2006) 

• Lee, W.W., S. Ethier, T. G. Jenkins, W. X. Wang, J. L. V. Lewandowski, G. Rewoldt, W. M. 
Tang, S. E. Parker, Y. Chen, and Z.Lin, 21th IAEA Conference on Plasma Physics and Controlled 
Nuclear Fusion Research, (Chengdu, China, 2006)

• Lee, W.W., S. Ethier, W. X. Wang, W. M. Tang and S. Klasky, “Gyrokinetic particle simulation 
of fusion plasmas: path to petascale computing”, Presented at SciDAC 2006, Denver CO., J. of 
Phys.: Conference Series 46, 73 (2006).

• Brizard, A.J., and T.S. Hahm, “Foundations of Nonlinear Gyrokinetic Theory”, Rev. Mod. 
Phys. 79, 421 (2007).

Publications
Review of Modern Physics: 1 
Physics of Plasmas: 11 published, 2 submitted
Journal of Computational Physics: 2 published
IAEA: 4 published
Other Journals: 3 published
Conference Proceedings: 11 published
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Code Development
• GTS
  -- A global code for turbulence transport simulations 
  -- Shaped plasma in general geometry interface with 

  TRANSP, JSOLVER and ESC
  -- Electron dynamics based on the split-weight scheme: 
      delta δh, non-adiabatic part of δf 
  -- GK Poisson’s equation is solved simultaneously 
     for zonal flows and perturbed potentials

• GTC 
  -- Adiabatic electron version for high performance computing
  -- Electrostatic electron dynamics based on the hybrid scheme
  -- Electromagnetic electron dynamics based on the hybrid scheme: 
 
• GTC-neo -- For neoclassical transport simulations in 
  -- General toroidal geometry 
  -- Fully operational collision operators 

• GEM 
  -- A wedge code with multi-ion species for turbulence and gyrokinetic MHD simulations 
  -- Shaped plasma in general geometry  with interface with TRANSP and JSOLVER

|ω/k‖v‖|! 1

• Object Oriented GTC framework  -- Based on Fortran-90 to facilitate team coding
ColoradoUCLA

GEM

GTS



• GTC is very portable, scalable and efficient on both cache-based and vector-parallel  MPPs.
• 20 TeraFlops/sec performance has been achieved with 74 billion particles on Jaguar (ORNL) with 
22,976 cores and 2.8 times faster than with 32,786 BG/L cores

GTC performance on MPP platforms 
aiming for ITER-size Plasmas  
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S. Ethier, PPPL, Apr. 2007

Joule Applications
& 250 TF campaign at 
ORNL



• Flux Tube codes are valid for large (m, n) modes

• Wedge codes include radial variations and some are valid only for large (m,n) modes

• Global codes are valid for any (m, n) modes and are truly five dimensional 

• Physics of turbulence transport alone dictates the the usefulness of these codes, i.e., 
 

-- are radial modes local or global?    
   

-- does energy cascade to lower or higher (m, n) modes ?

-- how about enstrophy, to higher (m,n) modes?
   

-- perpendicular spatial resolution: ion gyroradius, electron skin depth or electron gyroradius? 
   

-- parallel spatial resolution: field line following coordinates?
   

-- velocity space resolution? 
    √ trapped particle dynamics
    √ wave-particle interactions
    √ artificial dissipation
    √ discrete particle noise
--  collisions: can neoclaasical transport be simulated?

Numerical Considerations for Gyrokinetic Simulation Codes



General Geometry GTS
W. X. Wang [PoP ‘06]

• Global Turbulence Dynamics in Shaped Plasmas 

• Interfaced with TRANSP and JSOLVER and ESC 

• Re-Write of GTC
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W. X. Wang - GTS
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General Geometry GTC-neo
W. X. Wang [PoP, ‘06]



• First results - does not include parallel ion
equilibrium flows! (which are transonic or
supersonic)
• 128 particles / species / grid cell, 3 ion species,
experimental β

Comparisons of GEM with NSTX:
Energy Flux Measurements 

ColoradoG. Rewoldt and Y. Chen 
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• Steady state fluxes remain 
essentially the same with or 
without zonal flows and with 
or without parallel velocity 
space nonlinearity for  a 
small simulation volume.

• But, these nonlinearities 
become progressively 
important for larger systems

ITG simulations with for adiabatic electrons based on  
Cyclone-based parameters using GTC

Lee, Ethier and Kolesnikov
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• For example, zonal 
flows are essential for 
maintaining steady 
state flux for a larger 
simulation volume.

ITG simulations using GTC (cont.)

Lee, Ethier and Kolesnikov



Both zonal flows and velocity-space nonlinearity are essential for maintaining steady 
state flux for an even larger system (a/ ρ = 500).

• There is no steady state without these nonlinearities in large scale global simulations.
Lee, Ethier and Kolesnikov



Conservation properties of ITG simulation (20 particles/cell)

Lee, Ethier and Kolesnikov



χi is enhanced above the adiabatic electron level (with NLV)

Zonal flows 
develop finer 
structures 

• ITG simulation with kinetic electrons using GTC 
with the split-weight scheme [Lewandowski et al]

• TEM simulation with collisionless electrons using GEM with the split-weight scheme
[Lang, Parker and Chen] 

Enhanced electron particle flux

Colorado



GTC-EM : fluid electron model 

Growth rates and real frequencies for 
finite-beta modified ITG modes 

Mode structures for (a) the electrostatic potential 
and (b) the vector potential

Nishimura, Lin and Wang



pinch is likely to be
inward for OH and
electron-heated plasmas

plasmas with strong ExB
shear, incl. H-mode,
ITB’s

Most likely to be relevant
for:

convective pinch-like
term (the TEP-like piece
is insensitive to mode
details)

residual stress driven by
ExB shear (or ∇Pi/ni and
velocity shear via radial
force balance)

Main consequence:

ballooning mode
structure causing finite
net parallel acceleration
over the flux surface

mean ExB shear shifting
fluctuations radially

Provided by:

curvature drift
over the flux surface

k|| over the spectral
width

Symmetry-breaking:

Net acceleration of
parallel flow:

Hahm, Diamond, Gurcan,
Rewoldt
 [Phys. Plasmas, June ‘07]

Gurcan, Diamond, Hahm, Singh
[Phys. Plasmas
14, 042306 ‘07]

€ 

−eiB∇ ||δφ

€ 

−micv||∇ × ˆ b ⋅ ∇δφ

€ 

~ ˆ b × ( ˆ b ⋅ ∇) ˆ b 

€ 

miB
*dv|| /dt = −(eB + micv||∇ × ˆ b ) ⋅ ∇δφ

Two different mechanisms for non-diffusive momentum flux

Momentum Pinch from E x B shear and Magnetic Curvature 

Hahm et al.



[Nevins, Hammett, Dimits, Dorland, and Shumaker, PoP 12, 122305 (2005)]

• Since  dynamic plasma response is not included in the calculation, it is difficult to 
assess the effect of the shielding volume noise on long wavelength modes. 



• Fluctuation-Dissipation Theorem

L|E(k, ω)|2/8π = −(T/ω)Im(1/ε)

L|E(k)|2/8π =

∫
(dω/2π)L|E(k, ω)|2/8π = (T/2)[1/ε(k, ω = ∞) − 1/ε(k, ω = 0)].

• Fluctuations per k-mode

L|E(k)|2/8π = (T/2)(λ2

D/ρ2

s)

Discrete Particle Noise for Equilibrium Plasmas  

(John Reynders, PhD thesis, Princeton University, 1992)
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• Noise level for high frequency modes

• Noise level for low frequency modes

• Nonlinear saturation amplitude 

Fluctuation Dissipation Theorem applied to 
a nonlinearly saturated driven system

[Jenkins and Lee, PoP ‘07]



Discrete Particle Noise in Nonlinearly Saturated Plasmas
2D drift wave simulations 

with 
N = 32K, 500K, 1M 

(a) (b)

• high frequency noise decreases with particle number,
• saturation level is independent of particle number,
• background change is small.

[Jenkins and Lee, PoP ‘07]



 Electron transport in ETG simulation: total (solid line), noise driven 
contribution estimated by scramble test (dashed line) and estimated from 
δf weight (doted line). 

ETG simulation using GTC: 
Noise-driven transport vs. fluctuation-driven transport 

[Holod and Lin, PoP ‘07]



Entropy conservation in ITG turbulence: 
 velocity-space nonlinearity, collisions and numerical noise & dissipation in steady state

∂
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Vanishes in 
steady state

[Lee and Tang, ‘88]

Velocity Space 
  Nonlinearity

Collisional and/or numerical
dissipation

Entropy 
production

Monotonic 
increase in 

time

• Coarse graining in velocity space has to be taken with great care [Parker and Chen ’06, Watanabe 
and Sugama ‘06]



The Growing Weight Problem? 
and 

The Particle-Continuum Method

Resetting particle weights on a phase space grid periodically solves the so-called 
growing weight problem: no re-setting (black) vs. resetting (green and red)

Colorado

[Chen and Parker]



• It is important for simulating ITER-size devices
• Scaling inefficiencies point to large  numbers of Translation Lookaside Buffer (TLB) misses 
on some processes on XT4/3 with larger grids.

Two dimensional grid domain decomposition on GTC 
[Adams, Ethier, Wichmann]



Visualization  

[Klasky, ORNL; Ethier, Wang, PPPL]

[Ma, UC-Davis]

[Klasky, ORNL; Ethier, Wang, PPPL ]
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Electromagnetic GTC development at UCI

• Kinetic electrons and electromagnetic fluctuations

UCI

• Kinetic electrons and electromagnetic fluctuations 
implemented using fluid-kinetic hybrid electron model

• Enabled by a FEM field solver [Nishimura, Lin, y [
Lewandowski, Ethier, JCP2006]

• FEM solver extension for edge geometry in collaboration 
with CPES [Nishimura and Lin CPP 2006]

)

with CPES [Nishimura and Lin, CPP 2006]
• A shaped version with 3D equilibrium is being applied for 

DIII-D resonant magnetic perturbation (RMP) experiments in 

χ e
(v

eρ
e2 /

L T

g p ( ) p
collaboration with Evans and Joseph of GA

• Decyk of UCLA, in collaboration with Nishimura and Ethier, 
de eloped OO ersion for s pporting m ltiple field sol ersdeveloped OO version for supporting multiple field solvers 
and multiple species (impurity and energetic particle), and 
for integrating with shaped version

time (LT/ve)• GTC selected for early application of 250TF ORNL computer



GTC electromagnetic simulation

• Electromagnetic fluctuation via toroidal fluid kinetic hybrid

UCI

• Electromagnetic fluctuation via toroidal fluid-kinetic hybrid 
electron model

• Demonstrated finite-β stabilization of ITG modeβ
• Demonstrated Alfven wave propagation in tokamak, 

damping via phase mixing, and existence of toroidal 
frequency gap

)

frequency gap
• [Nishimura, Lin, and Wang,                                       

PoP2007] 

χ e
(v

eρ
e2 /

L T

]

time (LT/ve)



GTC nonlinear convergence in ETG simulation
• Convergence from 400 to 2000 particles per cell

UCI
g p p

Weak Cyclone case: R/LT=5.3, s=0.78, q=1.4, a/ρe=500, γ~ωr/4

• Noise driven flux is 4000 times smaller than ETG driven fluxNoise driven flux is 4000 times smaller than ETG driven flux

• Noise spectrum in ETG simulation measured. Noise driven 
flux calculated & measured, both in good agreement, g g

• ORNL Cray XT3, 6400 PE, 4x1010 particles

[H l d d Li P P2007] )• [Holod and Lin, PoP2007]

χ e
(v

eρ
e2 /

L T

time (LT/ve)



Electron transport via wave-particle decorrelation
• Time scale separation between kinetic and fluid processes

UCI
• Time scale separation between kinetic and fluid processes 

τauto >> 1/γ >>τwp ~ 1/Δk||ve

• Electron heat transport dominated by wave-particle p y p
decorrelation of parallel resonance δ(ω-k||v||) 

• Quasilinear calculation agrees well with GTC simulation
[Li t l EPS2007 i it d]• [Lin et al, EPS2007 invited]

iTime=

400 LT/ve

Time=

1400 LT/ve



GTC Simulation of CTEM turbulence
• CTEM turbulence: electron transport dominant & bursty, 

UCI
p y,

zonal flows dominate saturation mechanism but not regulate 
the bursting.
I ll b ti ith CPES [Xi d Li CPES i• In collaboration with CPES [Xiao and Lin, CPES spring 
meeting, 2007]

• A kinetic theory was developed for radial propagation and 

)

y p p p g
damping of kinetic GAM mode [Chen and Zonca, TTF2007]

χ e
(v

eρ
e2 /

L T

CTEM R/L R/L 2 2 time (LT/ve)CTEM: R/Ln=R/LTi=2.2, 
R/LTe=6.9, s=0.78, q=1.4



• It has been an exciting three years

• The PPPL team’s work on 
   -- GTC performance on MPP
   -- GTS and GTC-Neo and their V&V work
   -- PNL and noise
   -- Theory

• The UCI team’s work on
   -- ETG, TEM and noise using GTC
   -- EM capability for GTC

• The Colorado team’s work on
   -- GEM  for TEM 
   -- Particle continuum method
   -- EM capability in GEM and the V&V work

• The SAPP team on
  -- Solvers
  -- Visualization
  -- Data management

Conclusions



Future Directions

• Verification and  & Validation

• Electromagnetic physics in GTS

• ITER simulation capabilities

• Integrated simulation: Heating, Turbulence, MHD, Transport
 


