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Abstract

The microinstability properties of seven distinct magnetic geometries corresponding to different

operating and planned stellarators with differing symmetry properties are compared. Specifically,

the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinsta-

bilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as

parameters are varied. The familiar ballooning representation is used to enable efficient treatment

of the spatial variations along the equilibrium magnetic field lines. These studies provide useful

insights for understanding the differences in the relative strengths of the instabilities caused by the

differing localizations of good and bad magnetic curvature and of the presence of trapped particles.

The associated differences in growth rates due to magnetic geometry are large for small values of

the temperature gradient parameter η ≡ d lnT/d lnn, whereas for large values of η, the mode is

strongly unstable for all of the different magnetic geometries.

PACS numbers: 52.35.Qz,52.65.Tt,52.55.Hc

1



I. INTRODUCTION

The differing magnetic geometries of different stellarator designs have implications for

microinstabiities. More specifically, the different regions of localization, along a chosen

magnetic field line, of “good” (stabilizing) and “bad” (destabilizing) magnetic curvature

and of trapped particles can affect the linear growth rates of microinstabilities such as the

ion-temperature-gradient-trapped-electron modes (ITG-TEM modes). Here, we will com-

pare linear growth rates and real frequencies for these modes using the non-axisymmetric

or stellarator version1 of the FULL microinstability code,2,3 which employs the ballooning

representation,4 so that the corresponding lowest-order eigenfrequency-eigenfunction calcu-

lation, along a chosen magnetic field line, is radially local. We will consider seven different

cases corresponding to different operating and planned stellarator devices of different intrin-

sic symmetry properties. The first case is for the Large Helical Device5 (LHD), which is

not quasi-symmetric. The second case is for the National Compact Stellarator Experiment6

(NCSX), which is a quasi-axisymmetric design. This case has a non-zero net current. The

third case is a variant NCSX case with zero net current (NCSX-J=0). The fourth case cor-

responds to the Wendelstein 7-X (W7-X) design,7 which was designed using a confinement

principle later called quasi-isodynamicity.8 The fifth case is for the Helically Symmetric

Experiment9 (HSX), which is quasi-helically symmetric. The sixth case is for the Quasi-

Poloidal Stellarator10 (QPS). In order to make some contact with corresponding tokamak

results, the seventh case (NCSX-SYM) is axisymmetric, obtained from the NCSX case by

arbitrarily setting all of the (toroidal mode number) n 6= 0 Fourier coefficients for the mag-

netic field to zero in the input to the magnetohydrodynamic (MHD) equilibrium calculation.

For all of these cases, the geometric-center major radius, and the magnetic field strength at

this major radius, are normalized to be the same. Also, the pressure profile used in the MHD

equilibrium calculations is the same for all of the cases (and correspondingly the density and

temperature profiles used for the FULL code microinstability calculations), and are based

on those published in Fig. 4 of Ref. 11 for a particular (inward-shifted) LHD experimental

discharge, so that they will be in some sense experimentally-realizable. Also, all of the cases

are normalized here to the same, very low, volume-average β (= plasma pressure / mag-

netic pressure) value. Thus, the differences in the microinstability results that we obtain

come purely from the different magnetic field Fourier coefficients used as input for the MHD
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equilibrium calculations for the seven cases.

The FULL code has previously been applied, for studies of stellarator microinstabilities,

to an earlier design for NCSX in Ref. 1, and to several LHD experimentally-derived cases in

Refs. 12 and 13, in the radially-local limit using the ballooning representation, and including

trapped-electron effects. Other kinetic calculations of ITG modes in stellarator geometry

have been done in Refs. 14 and 15, using the radially-global EUTERPE code,16,17 for cases

based on HSX and W7-X, but only in the limit of adiabatic electron response. The calcula-

tion of Ref. 15 has recently been extended for finite-β MHD equilibria for W7-X in Ref. 18.

Other calculations using more approximate kinetic mode equations have been carried out for

W7-X and LHD in Refs. 19 and 20. The present work is the first to include realistic trapped-

electron effects, for comparison of these different stellarator magnetic geometries, in order

to investigate the effects of the differing trapped-electron localization and bad curvature

localization on the linear growth rates.

The input for the numerical MHD equilibrium calculation, and the equilibrium calculation

itself, are further described in Sec. II. The FULL code microinstability calculation and the

particular instability considered are described in Sec. III. The results for the effects of the

variation of the parameters on the linear growth rate and the real frequency are presented

in Sec. IV. Conclusions are presented in Sec. V.

II. MHD EQUILIBRIA

This section presents plasma equilibrium characteristics at (volume-average) β = 0.1%

for the LHD, NCSX, NCSX-J=0, W7-X, HSX, and QPS cases, as well as the NCSX-SYM

“tokamak” case. These equilibria were constructed based on VMEC MHD equilibrium

calculations21,22 for fixed plasma boundaries with the last closed magnetic surface defined

by (1) for LHD, the inward-shifted plasma for experimental shot 11369 at t = 2.2 s; (2)

for NCSX, the so-called M50 coils at 4% β, and (3) for NCSX-J=0, a high iota, vacuum

start-up configuration; (4) for W7-X, the standard high mirror ratio configuration; (5) for

HSX, the reconstructed plasma for standard operations; (6) for QPS, the reference two field-

period vacuum configuration, and (7) for the “tokamak” NCSX-SYM, the axially symmetric

components of NCSX. In all cases the major radius was normalized to 3.6 m and the magnetic

field on axis to 1.5 T. In the VMEC calculations, 61 radial grids, 11 poloidal modes and
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13 toroidal modes were used, except for the HSX case, for which 31 toroidal modes were

used instead, because of the large number of modes used in fitting the plasma boundary.

The pressure profile used is derived from the measured electron temperature and density

profiles of an LHD experimental discharge. Except for NCSX, the net current is assumed to

be zero. For NCSX, the current density expected from the bootstrap current at 4% β was

used. This current density was based on a broader pressure profile; thus it may not be fully

consistent with that based on the experimental profiles from LHD used in the present set of

calculations.

In Fig. 1, we show the plain view of the last closed magnetic surface (LCMS), along with

the contours of magnetic field strength on that surface (red = strongest, blue = weakest) for

the different cases. A plot for the NCSX-J=0 case is not shown because of its similarity to

the NCSX result. The subfigures show the typical characteristics expected of each device.

In particular, it is quite evident that in NCSX the magnetic spectrum is dominated by the

toroidal terms, in LHD by the m = 2, n = 1 component, in W7-X and QPS by the mirror

term m = 0, n = 1 (with mirror ratios 10% and 18%, respectively), and in HSX, by the

helical term m = 1, n = 1. (Here, m is the poloidal mode number and n is the toroidal

mode number.)

Fig. 2 shows the rotational transform profiles as a function of the normalized toroidal

flux s (s ∝ r2). The rotation of the ellipse and the large number of field periods in the

LHD case give rise to high shear in the rotational transform profile. On the other hand,

the shear in the NCSX case is almost entirely due to the plasma current. Typically, finite

plasma pressure reduces the transform at the edge. In the W7-X case, the edge rotational

transform will be less than one at 5% β, and the m = 5 resonance is avoided at the operating

pressure. The number of toroidal periods M and the calculated aspect ratio based on the

plasma volume are given in Table I for each case.

The three-dimensional MHD equilibium code VMEC works in VMEC coordinates. The

resulting MHD equilibria are transformed into Boozer coordinates23 by the TERPSICHORE

code,24 with the numbers of Fourier harmonics retained in the Boozer coordinates being

about twice the numbers used in the VMEC equilibrium calculations. The quantities needed

for the FULL code calculation along a single chosen magnetic field line are constructed by

the VVBAL code.25 For all of the cases here, we choose the magnetic surface with s = 0.74,

which is at or close to that which maximizes the linear growth rate for the LHD case. The
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particular magnetic field line chosen on this magnetic surface is specified by α ≡ ζ − qθ; α

will be varied for each case to maximize the linear growth rate. In addition, in the ballooning

representation, the “ballooning parameter” θ0 (also called θk) must be chosen; θ0 will also

be varied for each case to maximize the linear growth rate.

III. MICROINSTABILITY CALCULATION

The FULL code solves the linearized gyrokinetic equation and the quasineutrality condi-

tion. It includes trapped particle effects, finite Larmor radius effects to all orders (complete

Bessel functions), and bounce frequency and transit frequency and magnetic drift frequency

resonances, for all included plasma species. The FULL code automatically finds all of the

trapped particle classes for any pitch angle, for the input variation of the magnetic field

strength along the chosen magnetic field line. The calculation is in the collisionless, elec-

trostatic limit. In this limit, it has been compared26 for a stellarator case with the GS2

initial value code,27 showing good agreement. The FULL code was previously applied13 for

the present LHD case in a more experimentally realistic manner, including two impurity

species and a hot beam species. In the present work, since the emphasis is on the differences

caused by the different magnetic geometries in the microinstability growth rates and real

frequencies, we include only electron (e) and thermal hydrogen (i) species, with ni = ne and

Ti = Te on all surfaces.

In the collisionless, electrostatic limit, for kθρi
<∼ 1, the instabilities of interest are the

ion temperature gradient (ITG) mode and the (collisionless) trapped electron mode (TEM

mode). For the present cases, these modes “hybridize” to form a single unstable root, which

we call the ITG-TEM root. For small values of ηi ≡ (d ln Ti)/(d ln ne), this root is desta-

bilized only by the collisionless trapped electron mode (CTEM) destabilization mechanism,

and has a real frequency in the electron diamagnetic direction. The CTEM mechanism is a

resonance mechanism coming from the trapped-electron orbit-time-average term, involving

resonance between the mode frequency ω and the orbit-time-average electron magnetic drift

frequency, ω
(0)
de . The value of ω

(0)
de for any given pitch angle depends on the trapped electron

orbit extent along the magnetic field line, and on the distribution of good and bad magnetic

curvature along the magnetic field line. The effects of these, for a specific root, is weighted

by the linear eigenfunction along the magnetic field line for that root. For large values of ηi,
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the root is destabilized both by the CTEM mechanism and by the ITG mechanism, and has

a real frequency in the ion diamagnetic direction. The ITG mechanism is a non-resonant

mechanism which operates only above a critical value ηc
i (which is typically of order 1.0 to

1.5) of ηi, and is only moderately affected by the ion magnetic drift frequency; the ITG

mechanism is stronger at shorter effective connection lengths along the magnetic field line.

At an intermediate value of ηi, the real frequency of this hybrid root makes a transition from

the electron diamagnetic direction to the ion diamagnetic direction.

The input functions |B(θ)|, versus the ballooning (non-periodic) poloidal angle coordinate

θ along the magnetic field line, from −π to π, are shown for the seven cases in Fig. 3.

Illustrative trapped-particle orbit extents in θ are shown by the thick lines for one or more

illustrative pitch angles for each case. These profiles are evaluated for the values αMax of α,

and θMax
0 of θ0, which maximize the linear growth rate of the hybrid root for each case. The

numerical values of αMax and θMax
0 for the seven cases are given in Table I. The results for

the maximization process are given in Sec. IV. The corresponding input functions k2
⊥(θ)/n2

(i.e., k2
⊥(θ) ∝ n2 for n = 1) for the seven cases for these same values of α and θ0 are

shown in Fig. 4. The corresponding input functions for the magnetic curvature function

k⊥ · {b× [(b ·∇)b]}(θ)/n (i.e., k⊥ · {b× [(b ·∇)b]}(θ) ∝ n for n = 1) for the seven cases for

these same values of α and θ0 are shown in Fig. 5. In Fig. 5, bad (destabilizing) curvature

is positive and good (stabilizing) curvature is negative. Note that the symmetry in θ for the

functions in Figs. 3, 4, and 5 is slightly broken for the W7-X, HSX, and QPS cases by their

nonzero values of αMax.

IV. RESULTS

In this section we will maximize the linear growth rate for the hybrid root successively

over α, θ0, and kθ(θ = 0)ρi ∝ n (this order is somewhat arbitrary), for each of the seven

cases. The resulting values give roughly a simultaneous maximum of the growth rates in

these three parameters; the maximization could be slightly further improved by additional

scans over the three parameters, but that would be excessively computationally expensive.

Then we will vary η = ηi = ηe from the LHD experimental value; this η variation will give

us information about the strengths of the two destabilization mechanisms for this root, as

they differ among the seven cases.
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We start by varying α for each case, taking θ0 = 0, kθ(θ = 0)ρi = 0.30, and ηi = ηe = 2.66,

the LHD experimental value. We vary Mα from 0 to π; since each of the equilibria is

symmetric around both Mα = 0 (the start of a period) and Mα = π (the half-period value),

this covers the entire range of variation of the growth rate and real frequency. The results

of this variation for the linear growth rate γ and real frequency ωr for the seven cases are

shown in Fig. 6. The values αMax of α that maximize the growth rates are given in Table I.

Four of them are zero and the other three are non-zero. Of course, since the choice of origin

in α is arbitrary, there is no requirement that the extremal value of α be zero in general.

For our axisymmetric NCSX-SYM case, the result is independent of α, and we arbitrarily

use α = 0 for the remaining calculations.

Then, taking α = αMax for each case, and again with kθ(θ = 0)ρi = 0.30 and ηi = ηe =

2.66, we vary θ0 from 0 to π; again because of the symmetry and periodicity in θ0, this covers

the entire range of variation in θ0. The results of this variation of θ0 for the seven cases are

shown in Fig. 7. For all seven cases, we find that θMax
0 = 0. This is also the most common

result in tokamak cases, since the choice θ0 = 0 allows the eigenfunction to localize around

θ = 0, where the bad curvature and the trapped electron fraction are both a maximum,

thereby maximizing the growth rate. Similar considerations apply here for the stellarator

cases, though the variation in θ of the magnetic field strength in Fig. 3 and of the magnetic

curvature in Fig. 5 are more complicated.

Next, we vary kθ(θ = 0)ρi ∝ n, from zero to one, for α = αMax and θ0 = θMax
0 = 0 and

η = ηi = ηe = 2.66 for each case. The results of this variation are shown in Fig. 8. The

values kMax
θ (θ = 0)ρi of kθ(θ = 0)ρi that maximize the growth rates are given in Table I.

They vary from 0.25 to 0.775. However, the exceptional case is the W7-X case, where the

growth rate plateaus for kθ(θ = 0)ρi above one, instead of having a local maximum (several

other cases almost plateau in the same way). For the W7-X case, therefore, we arbitrarily

choose to use kθ(θ = 0)ρi = 1.0 for the remaining calculations.

The linear eigenfunctions in the (nonperiodic) ballooning angle θ for the hybrid root, for

these maximizing values of α, θ0, and kθ(θ = 0)ρi, are shown for the seven cases in Fig. 9.

Note that the (complex) normalization is arbitrary for these eigenfunctions. All of them

have (half) width (at half maximum) from of order one radian or less, up to about two

radians.

Finally, we vary η = ηi = ηe from zero to four for each of these cases, for the maximizing
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values of α, θ0, and kθ(θ = 0)ρi. This variation will give us additional information about

the CTEM and ITG destabilization mechanisms for each of these cases. In this process,

the total pressure gradient is kept constant, so as to maintain consistency with the MHD

equilibrium. This means, for instance, that as ηi and ηe increase, and thus as the ion

temperature gradient and the electron temperature gradient increase, the electron and ion

density gradient decreases. The results of this variation are shown in Fig. 10. As mentioned,

the real frequency makes a transition from the electron diamagnetic direction to the ion

diamagnetic direction as η increases. All of the seven cases are strongly unstable for η

values at the upper end of the η range, where both the ITG and CTEM mechanisms are

operative. All of the cases have roughly comparable linear growth rates there, except for the

HSX case, which has a substantially higher growth rate. This is due to the facts that the

HSX case has both a short effective connection length (which enhances the ITG mechanism)

and substantial bad curvature at θ = 0 (which enhances the CTEM mechanism), and is the

only case with both of these attributes. Then, as η is reduced from this range to be below ηc
i ,

the ITG mechanism turns off, leaving only the CTEM mechanism operative. What happens

for each of the cases for small η depends on the details of the bad curvature localization

and the trapped particle localization, as weighted by the eigenfunction. For this kind of

η-variation where the density gradient increases as the temperature gradients decrease, for

a nearly circular cross-section tokamak the growth rate can have a strong increase, below a

minimum for η ' ηc
i , with a maximum at η = 0, as seen in Fig. 4 of Ref. 28. On the other

hand, for a strongly non-circular cross-section tokamak, where the bad curvature is much

weaker near θ = 0, the rise in growth rate can be much weaker, with the maximum growth

rate away from η = 0, as seen in Fig. 1 of Ref. 28. In the present stellarator cases, a range of

behaviours is seen, from the NCSX-J=0, NCSX, and LHD cases, which have local maxima

in the growth rate at η = 0, to the HSX, W7-X, and NCSX-SYM cases, whose growth rates

decrease monotonically down to η = 0 (though the overall destabilization of the HSX case

is much larger), to the QPS case, which is completely stable for η <∼ 0.5. The implications

of these different types of variation will be discussed in Sec. V.

It is worthwhile examining the most extreme case, the QPS case, to see in more detail how

this stabilization comes about for small η, when only the CTEM mechanism is operative.

From Fig. 9, the half-width at half-maximum of the eigenfunction for the QPS case is about

0.4 radians (this figure is for η = 2.66, but the eigenfunction has about the same width for

8



η = 0.5), so that anything much outside |θ| = 0.4 radians will have a weak influence on

the growth rate. In the magnetic field strength variation for the QPS case in Fig. 3, the

most deeply trapped particles are localized in two wells centered around θ = −0.4 radians

and around θ = 0.4 radians. However, the curvature is almost zero for the QPS case near

θ = −0.4 radians and near θ = 0.4 radians. The next most deeply trapped particles are

centered around θ = 0, but with turning points near -0.6 radians and 0.4 radians. Deeply

trapped particles spend most of the time in their orbits near their turning points, so this class

of trapped particles will also strongly weight the near-zero curvature regions near θ = −0.4

radians and near θ = 0.4 radians. The other classes of trapped particles will spend most of

the time in their orbits away from the region most strongly weighted by the eigenfunction.

The total destabilization will thus be weak, and unable to overcome the damping due to ion

transit frequency resonances (ion Landau damping) for untrapped ions, bounce frequency

resonances for trapped ions, magnetic drift frequency resonances, etc. The net result of all

of these contributions can only be evaluated numerically, and that is what is done in the

FULL code calculation for the QPS case and for the other cases.

V. CONCLUSIONS

We have compared the microinstability properties of a number of different stellarator

magnetic geometries for particular configurations for the LHD, NCSX, W7-X, HSX, and

QPS stellarators. For NCSX, we have examined the present NCSX design with non-zero

net current, and a variant, NCSX-J=0, with zero net current, but there is little difference

between them for the microinstability results. We have also examined an axisymmetric ver-

sion of the NCSX MHD equilibrium, NCSX-SYM. All of these cases have MHD equilibrium

input normalized to the same geometric-center major radius, and to the same magnetic field

strength at that major radius, and all use the same pressure profile as a function of the

normalized toroidal flux, (derived from published LHD electron density and temperature

profiles), all at the same very low volumn-average β value. The results might differ some-

what for other choices of the pressure profile, or for another choice of the single magnetic

surface on which the instability calculation is performed. The linear growth rate and the

real frequency are calculated by the nonaxisymmetric version of the FULL code, in the col-

lisionless, electrostatic limit, for a particular hybrid root, which contains the usual ITG and
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TEM modes. The growth rates on the chosen magnetic surface are maximized over the field

line label α ≡ ζ − qθ, over the ballooning parameter θ0 (or θk), and over kθ(θ = 0)ρi ∝ n,

for each case, for the LHD experimental value of η = ηi = ηe = 2.66. For these maximizing

values of α, θ0, and kθ(θ = 0)ρi, η is then varied from high values where both the ITG

and the CTEM destabilization mechanisms contribute, down to low values where only the

CTEM mechanism contributes. The CTEM contribution for the different cases depends on

the relative localization of trapped particles and of bad magnetic curvature in the region

where the linear eigenfunction is large. The seven cases fall into distinct categories: For the

NCSX, NCSX-J=0, and LHD cases, the growth rate rises as η approaches zero, indicating

a rather strong destabilizing contribution from the CTEM mechanism. For the W7-X, and

NCSX-SYM cases, the growth rate is falling as η approaches zero, indicating a weak desta-

bilizing contribution from the CTEM mechanism. (The growth rate for the HSX case is

also falling as η approaches zero, but the overall destabization is larger, due to the reasons

mentioned in Sec. IV.) The QPS case falls into this same category, but the effect is even

stronger, and the mode is completely stabilized for η <∼ 0.5.

However, a point that should be emphasized here is that all of these cases are strongly

unstable if η is large enough, that is, if the ion temperature gradient is large enough, re-

gardless of the magnetic geometry! Thus, all of these configurations can be expected to be

subject to ITG-type instabilities in radial regions of strong ion temperature gradient, even

if the trapped-electron destabilization mechanism is weak for a particular magnetic field

configuration! The present results are only a first attempt at this kind of comparison, for

a single set of density and temperature (and thus pressure) profiles, and will vary quantita-

tively for other sets of profiles, but this general conclusion should be of wider applicability.

However, the effects of sheared rotation, which may be substantial with the various types

of quasi-symmetry, are not considered here, and may have the capability of changing these

conclusions qualitatively, and thus are also worth further investigation.
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FIGURE CAPTIONS

FIG. 1: Variation of magnetic field strength (blue = weakest, red = strongest) on last closed flux

surface for LHD, NCSX, W7-X, HSX, QPS, and NCSX-SYM cases.

FIG. 2: Variation of rotational transform ι = 1/q with magnetic surface label s.

FIG. 3: Variation of magnetic field strength versus non-periodic ballooning coordinate θ on chosen

magnetic field line, showing illustrative trapped particle orbit extents.

FIG. 4: Variation of k2
⊥/n2 versus θ on chosen magnetic field line.

FIG. 5: Variation of magnetic curvature function k⊥ · {b × [(b · ∇)b]}(θ)/n versus θ on chosen

magnetic field line.

FIG. 6: Variation of linear growth rate γ and real frequency ωr versus magnetic field line label

Mα ≡ M(ζ − qθ) on chosen magnetic surface.

FIG. 7: Variation of linear growth rate γ and real frequency ωr versus ballooning coordinate θ0

(= θk) on chosen magnetic field line.

FIG. 8: Variation of linear growth rate γ and real frequency ωr versus kθ(θ = 0)ρi ∝ n.

FIG. 9: Linear eigenfunctions versus non-periodic ballooning coordinate θ, for values of α, θ0, and

k⊥(θ = 0)ρi that maximize linear growth rate (or k⊥(θ = 0)ρi = 1.0 for W7-X case).

FIG. 10: Variation of linear growth rate γ and real frequency ωr versus η = ηi = ηe.
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TABLE I: Parameters for the seven stellarator cases (values in parentheses are arbitrarily chosen).

Case M aspect ratio αMax θMax
0 kMax

θ (θ = 0)ρi

(radians) (radians)

LHD 10 5.84 0.0 0.0 0.25

NCSX 3 4.47 0.0 0.0 0.65

NCSX-J=0 3 4.37 0.0 0.0 0.775

W7-X 5 10.45 0.39 0.0 (1.00)

HSX 4 10.0 0.1 0.0 0.65

QPS 2 2.66 0.35 0.0 0.65

NCSX-SYM (1) 4.0 (0.0) 0.0 0.55
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