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Understanding discrete particle noise in an equilib-

rium plasma has been an important topic since the early
days of particle-in-cell simulation [1]. In this paper, par-

ticle noise in a nonlinearly saturated system is inves-
tigated. We explore the usefulness of the fluctuation-
dissipation theorem (FDT) in a regime where drift in-

stabilities are nonlinearly saturated. We obtain excellent
agreement between the simulation results and our theo-

retical predictions of the noise properties. It is found
that discrete particle noise is independent of the satura-

tion level and transport properties associated with long-
wavelength drift waves when mode coupling is ignored.

[1] C. K. Birdsall and A. B. Langdon, Plasma Physics via

Computer Simulation, McGraw-Hill, New York (1985).
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Gyrokinetic Vlasov equation, (k⊥ρi � 1):

∂Fα

∂t
+ v‖b · ∇Fα −∇φ× b · ∇Fα −

qαmi

qimα

b · ∇φ
∂Fα

∂v‖
= 0

Gyrokinetic Poisson equation:

∞
∑

l=−∞

∞
∑

m=−∞
k2

⊥(l, m)φl,m(t)eikxlxeikymy =
∑

α

qα

qi

∫ ∞

−∞
Fαdv‖

• Fα = Fα(x, y, v‖, t) is the distribution function of species α (two
species, ions and electrons).

• φ = φ(x, y, t) is the electrostatic potential, normalized to T/qi;
T is the temperature of both species.

• b= θŷ + ẑ, θ � 1; v‖ is the velocity parallel to the magnetic
field Bb.

• Lengths normalized to ρi =
√

T
mi

1
Ωi

, times normalized to Ω−1
i =

(qiB/mi)
−1.

• k2
⊥(l, m) = k2

xl
2 +k2

ym
2(1−θ2) is the (square of the) wavevector

component perpendicular to the magnetic field; k‖ = θky is the
component parallel to the field.

• Periodic boundary conditions in a slab of size Lx, Ly; kx =
2π/Lx, ky = 2π/Ly.

• mα, qα are the mass and charge of species α. With normaliza-
tion, thermal velocity v2

tα = mi/mα.

Equilibrium

Fα0(v‖) =
1√

2
√

πvtα

exp

(

−
v2
‖

2v2
tα

)

; φ(x, y, t) = 0



Drive drift waves in the system by letting

Fα0(x, v‖) = Fα0(v‖)





ε exp
(

− εx
Lx

)

1 − exp(−ε)





• ε = κNLx � 1

• To lowest order Fα0(x, v‖) = Fα0(v‖) (independent of x)

• To lowest order ∇Fα0(x, v‖) = −κNFα0(v‖)x̂ (independent of
x). Define ω∗

N = kyκN .

Linear dielectric for this system is

Dl,m(ω) = 1 +
(

1 +
mω∗

N

ω

)

Xi

k2
⊥(l, m)

+
(

1 − mω∗
N

ω

)

Xe

k2
⊥(l, m)

Xα = 1 + ξαZ(ξα) ; ξα =
ω√

2k‖mvtα

where Z(ξα) is the plasma dispersion function.

For undriven system (ω∗
N = 0):

lim
ω→∞

Dl,m(ω) = 1

• No dielectric response if the frequency is too high

lim
ω→0

Dl,m(ω) = 1 +
2

k2
⊥(l, m)

• The gyrokinetic equivalent of Debye shielding; will use later



Undriven system (ω∗
N = 0) - normal modes

• Set Dl,m(ω) = 0:

1 +
Xi

k2
⊥(l, m)

+
Xe

k2
⊥(l, m)

= 0

• Assume both species are fluidlike:
ξα � 1 ⇒ Xα ∼ −1/2ξ2

α − 3/4ξ4
α − . . .

• Neglect ion contribution; v2
te � v2

ti (ion distribution is a narrow
Maxwellian, electron distribution is a wide Maxwellian, so at high
velocities the electron contribution is more significant)

• Obtain ωH-modes:

0 = 1 −
m2k2

‖v
2
te

ω2k2
⊥(l, m)

= 1 − ω2
H

ω2
; ωH = ± mk‖vte

k⊥(l, m)

• These modes can be shown to be weakly damped.

• Assume fluidlike ions, kinetic electrons:
ξi � 1, ξe � 1 ⇒ Xi ∼ −1/2ξ2

i , Xe ∼ 1

• Ion acoustic modes:

1 −
m2k2

‖

k2
⊥(l, m)ω2

+
1

k2
⊥(l, m)

= 0 ; ωIA = ± k‖m
√

1 + k2
⊥(l, m)

• These modes can be shown to be strongly Landau damped
when Ti = Te.

ω
H

/ k
||

ω
r
/ k

||

ω
IA

/ k
||

F
0i

F
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• Fluctuation-dissipation theorem tells us that (in thermal equi-
librium)

〈δφδφ〉l,m(ω) =
2

Nωk2
⊥(l, m)

Im

(

1 − 1

Dl,m(ω)

)

• Integrate over all frequencies:

〈δφδφ〉l,m =
1

2π

∫ ∞

−∞

2

Nωk2
⊥(l, m)

Im

(

1 − 1

Dl,m(ω)

)

dω

• If the dielectric has no poles in the upper half-plane, take prin-
cipal value and perform integration:

〈δφδφ〉l,m = Im P
1

2π

2

Nk2
⊥(l, m)

∫ ∞

−∞

(

Dl,m(ω) − 1

ωDl,m(ω)

)

dω

〈δφδφ〉l,m =
1

Nk2
⊥(l, m)

(

Dl,m(ω = 0) − 1

Dl,m(ω = 0)

)

• For undriven system, we obtain

〈δφδφ〉l,m =
1

Nk2
⊥(l, m)

(

2

k2
⊥(l, m) + 2

)

• Doesn’t work for driven system; the drift wave grows, implying
a pole in the upper ω-half-plane; also, original formula is only strictly
valid in thermal equilibrium.



Drift waves

• Fluidlike ions, kinetic electrons -
ξe � 1, ξi � 1 ⇒ Xi ∼ 0, Xe ∼ 1 + i

√
πξe.

• Mode frequency and growth rate - set Dl,m(ω) = 0:

Dl,m(ω) = 0 =

[

k2
⊥(l, m) +

(

1 − mω∗

N

ω

)

(1 + i
√

πξe)
]

k2
⊥(l, m)

• Assume ω = ωr + iγr, γr � ωr; to lowest order

ωr =
mω∗

N

1 + k2
⊥(l, m)

; γr =

√
πω2

rk
2
⊥(l, m)

(1 + k2
⊥(l, m))

√
2k‖vte

• Drift wave frequency much smaller than ωH .



• For normal modes, we can approximate the function

〈δφδφ〉l,m(ω) =
2

Nωk2
⊥(l, m)

Im

(

1 − 1

Dl,m(ω)

)

• Dl,m(ω) = D′ + iD′′

〈δφδφ〉l,m(ω) =
2

Nωk2
⊥(l, m)

[

D′′

D′2 + D′′2

]

• For small D′′ (normal modes that are weakly damped), the
Lorentzian function approaches a delta function;

〈δφδφ〉l,m(ω) ≈ 2

Nωk2
⊥(l, m)

πδ(D′) =
2π

Nk2
⊥(l, m)

p0
∑

p=1

δ(ω − ωp)

ω
(

∂D′

∂ω

∣

∣

∣

ω−ωp

for the p0 normal modes with real frequency ωp.
• Apply to ion acoustic and ωH-modes:
(

1 + k2
⊥(l, m)

k2
⊥(l, m)

)(

1 − ω2
IA

ω2

)

= 0 ⇒ ω

(

∂D′

∂ω

)

=
2(1 + k2

⊥(l, m))

k2
⊥(l, m)

(

1 − ω2
H

ω2

)

= 0 ⇒ ω

(

∂D′

∂ω

)

= 2

〈δφδφ〉l,m(ω) =
2π

N

[

δ(ω − |ωH |)
2k2

⊥(l, m)
+

δ(ω + |ωH|)
2k2

⊥(l, m)
+

δ(ω − |ωIA|)
2(1 + k2

⊥(l, m))
+

δ(ω + |ωIA|)
2(1 + k2

⊥(l, m))

]



• Since k2
⊥(l, m) is small, the ωH-terms are dominant; spectral

density function is composed of localized peaks at normal modes.
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• Numerical representation of 〈δφδφ〉l,m(ω); θ = 0.01, Lx = 64,

Ly = 32, (l, m) = (1, 1), vte =
√

1837.0. Qualitatively correct;
large-amplitude sharp peaks near ωH modes; smaller-amplitude, less
well-defined peaks near ion acoustic modes.



• Compare ω-integrated spectral density approximation with ex-
act answer:

〈δφδφ〉l,m(approximate) =
1

N

[

1

k2
⊥(l, m)

+
1

(1 + k2
⊥(l, m))

]

〈δφδφ〉l,m(exact) =
1

Nk2
⊥(l, m)[1 + k2

⊥(l, m)/2]

• Slight overestimate, but corrections are of order k2
⊥(l, m), which

is small.

• Keeping more terms in the expansion of Z(ξα) improves both
this estimate and the prediction for the location of peaks in the
spectral density.

• Spectral density ∼ 1/N , where N is the number of particles in
the system.



• Include drift waves - what changes? Assume ω∗
N is small and

find its effect on normal modes

• For ωH-modes:

0 = 1 − ω2
H

ω2
+

mω∗
Nω2

H

ω3
⇒ ω = ±ωH − mω∗

N

2

• ωH-modes slightly downshifted.

• For ion acoustic modes:

0 =

(

1 + k2
⊥(l, m)

k2
⊥(l, m)

)[

1 − ω2
IA

ω2
− mω∗

Nω2
IA

ω3
− mω∗

N

ω(1 + k2
⊥(l, m))

]

⇒ ω = ±ωIA +
mω∗

N

2

[

2 + k2
⊥(l, m)

1 + k2
⊥(l, m)

]

• ωIA-modes slightly upshifted.

• Estimate for ω-integrated 〈δφδφ〉l,m remains the same, to lowest
order in ω∗

N .

• Can’t perform the ω-integral analytically when growing modes
are present; numerical representation has problems capturing tran-
sition from damped to growing modes



• The (positive definite) spectral density function is still com-
posed of localized peaks at normal modes, but its numerical repre-
sentation is not correct for all ω.
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• Numerical representation of 〈δφδφ〉l,m(ω); same parameters
with κN = 0.02. Modes shift in the proper direction; transition
from damped to growing modes causes spurious numerical results.



Drift waves - nonlinear saturation

• As the drift wave nonlinearly saturates, its growth rate de-
creases to zero (marginally stable state); relevant frequency is now
no longer in upper ω-half-plane.

• Keep only a single mode and its conjugates (l = ±1, m = ±1),
estimate properties of nonlinearly saturated state using quasilinear
approach (no mode coupling).

• Electron physics drives the drift wave, so neglect ion nonlineari-
ties and perturbed ion current - we obtain (from Vlasov and Poisson
equations)

∂δfe

∂t
+ v‖θ

∂δfe

∂y
−∇φ × b · ∇δfe + v2

teθ
∂φ

∂y

∂δfe

∂v‖
+

∂φ

∂y
F0eκN − θv‖

∂φ

∂y
F0e = 0

∂δni

∂t
+ κN

∂φ

∂y
= 0

∞
∑

l=−∞

∞
∑

m=−∞

k2
⊥(l, m)φl,m(t)eikxlxeikymy = δni −

∫ ∞

−∞
δfedv‖

• Neglect parallel velocity nonlinearity, Fourier transform in time
and space:

−iωl,mδfelm(ω) + imk‖v‖δfelm(ω) + iφl,m(ω)(mω∗
N − mk‖v‖)F0e+

∞
∑

l′=−∞

∞
∑

m′=−∞

(m′l − l′m)kxkyφl′,m′(ω)δfl−l′,m−m′(ω)

e−i(ωl′,m′+ωl−l′,m−m′−ωl,m)t = 0

−iωl,mδnilm(ω) + imω∗
Nφl,m(ω) = 0

k2
⊥(l, m)φl,m(ω) = δnilm(ω) −

∫ ∞

−∞
δfelm(ω)dv‖

ω∗
−l,−m = ωl,m ; φ∗

−l,−m(ω) = φl,m(ω) ; δf ∗
e−l,−m(ω) = δfel,m(ω)



• From linear dispersion relation, (l = ±1, m = ±1):

ω∗
1,−1 = −ω1,1 ; φ∗

1,−1(ω) = φ1,1(ω) ; δf ∗
e1,−1(ω) = δfe1,1(ω)

δfe1,1(ω) = φ1,1(ω)F0e
(ω∗

N − k‖v‖)

(ω1,1 − k‖v‖)

• Substitute these into l = 2, m = 0 equation:

δfe2,0(ω) = −2ikxkyF0e|φ1,1(ω)|2(ω∗
N − k‖v‖)

|ω1,1 − k‖v‖|2
; ω2,0 = 2i Im ω1,1

• Nonlinear l = 1, m = 1 equation; ω1,1 = ω1,1r + iγ1,1:

δfe1,1(ω) = φ1,1(ω)F0e
(ω∗

N − k‖v‖)

(ω1,1 − k‖v‖)
− 2ikxkyφ1,1(ω)δfe2,0(ω)e2γ1,1t

(ω1,1 − k‖v‖)

• Nonlinear dispersion relation (only retaining growth rate cor-
rections);

k2
⊥(l, m) + 1 − ω∗

N

ω1,1
+

i
√

π(ω1,1r − ω∗
N)√

2k‖vte

[

1 − 4k2
xk

2
y|φ1,1(t)|2
γ2

1,1

]

• Nonlinear growth rate:

γ1,1NL = γ1,1

[

1 − 4k2
xk

2
y|φ1,1(t)|2
γ2

1,1

]

; Saturation φ1,1(t) ∼
γ1,1

2kxky

• Drift wave grows up, saturates, and is (nonlinearly) marginally
stable: at saturation,

Dl,m(ω) =

[

1 + k2
⊥(l, m)

k2
⊥(l, m)

]

[

1 − ω1,1r

ω

]

• Now, can find approximate contribution of drift wave to ω-
integrated spectral density:



〈δφδφ〉l,m(ω) ≈ 2π

Nk2
⊥(l, m)

p0
∑

p=1

δ(ω − ωp)

ω
(

∂D′

∂ω

∣

∣

∣

ω−ωp

• This yields the expression

〈δφδφ〉l,m(ω) ≈ 2π

N

[

δ(ω − ω1,1r)

1 + k2
⊥(l, m)

+

(nonlinearly saturated drift waves)

δ
[

ω − |ωH | + ω∗

N

2

]

k2
⊥(l, m)

(

2 − ω∗

N

|ωH |

) +
δ
[

ω + |ωH| + ω∗

N

2

]

k2
⊥(l, m)

(

2 − ω∗

N

|ωH |

) +

(ωH modes)

δ
[

ω − |ωIA| − ω1,1r(1 +
k2

⊥
(l,m)

2
)
]

[1 + k2
⊥(l, m)]

[

2 +
ω1,1rk2

⊥
(l,m)

|ωIA|

] +
δ
[

ω + |ωIA| − ω1,1r(1 +
k2

⊥
(l,m)

2
)
]

[1 + k2
⊥(l, m)]

[

2 − ω1,1rk2

⊥
(l,m)

|ωIA|

]









(Ion acoustic modes)

• Now, integrate this formula over high frequencies only; nonzero
but small ω∗

N in the dispersion relation only leads to slight shifts in
the normal mode frequencies:

∫ ∞

−∞

〈δφδφ〉l,m(ω)

2π
dω

∣

∣

∣

∣

∣

large |ω|

≈ 1

Nk2
⊥(l, m)







1

1 +
ω∗2

N

4ω2

H







• For the undriven system,
∫ ∞

−∞

〈δφδφ〉l,m(ω)

2π
dω

∣

∣

∣

∣

∣

large |ω|

≈ 1

Nk2
⊥(l, m)

• The spectral wavenumber density, at large |ω|, is nearly un-
altered by the presence of the drift wave. It continues to scale as
N−1. For drift waves, however, the fluctuations amplify, and the
mode grows until the nonlinear saturation effects (independent of
N) halt its growth. Thus, we expect this function to have a peak
at the drift frequency ω1,1r with an amplitude independent of N ;
as well, we expect peaks at the frequencies ±ωH , with amplitudes
which decrease with increasing N .



Properties of discrete particle noise

• In Fourier space, spectral density function for ω∗
N = 0 system

indicates that discrete particle noise resides prominently at frequen-
cies ω = ±|ωH |; its amplitude scales as N−1.

• For small ω∗
N , the high-frequency (discreteness-related) compo-

nents of the spectral density do not change appreciably. Drift waves
occur, but at a much lower frequency for a given wavenumber.

• The drift waves saturate at a level independent of N (assuming
large enough N for accurate results).
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• Simulations confirm these predictions. Here, we simulate drift
instabilities (κN = 0.2) on a 128× 128 grid, with θ = 0.01, (l, m) =
(±1,±1), Lx = Ly = 23, and ∆t = 0.125.
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• To ensure that the ωH-noise is not affecting the drift wave, see
if drift-wave peak in the spectral density broadens as a function of
N .

• No broadening seen; suggests that noise is not substantially
affecting physics of drift wave.



• Discreteness-induced noise can also influence measurements of
particle flux; can decrease average flux levels spuriously if too few
particles are used. Average flux converges quickly with N once
enough particles are used to obtain good statistics.

• Signal-to-noise ratio improves as particle number is increased,
even after average flux level has stabilized.

0 500 1000 1500 2000 2500
−5

0

5
x 10

−7 N = 32,000

Time (Ω t)

0 500 1000 1500 2000 2500
−5

0

5
x 10

−7 N = 500,000

Time (Ω t)

E
le

ct
ro

n 
pa

rt
ic

le
 fl

ux
, 1

/N
 Σ

n=
1

N
 w

n E
y 

n

0 500 1000 1500 2000 2500
−5

0

5
x 10

−7 N = 1,000,000

Time (Ω t)

• Same parameters as on previous page; the noise on the particle
flux measurement decreases as N is increased.



Particle simulations

• Evolve particles according to characteristics of Vlasov equation,
value of Fα is conserved along these orbits.

∂Fα

∂t
+ v‖b · ∇Fα −∇φ × b · ∇Fα − qαmi

qimα
b · ∇φ

∂Fα

∂v‖
= 0

• Characteristics:

dxjα(t)

dt
= −

(

∂φ(x, y, t)

∂y

∣

∣

∣

∣

∣

x=xjα(t),y=yjα(t)

dyjα(t)

dt
= θv‖jα(t) +

(

∂φ(x, y, t)

∂x

∣

∣

∣

∣

∣

x=xjα(t),y=yjα(t)

dv‖jα(t)

dt
= −qαmi

qimα
θ

(

∂φ(x, y, t)

∂y

∣

∣

∣

∣

∣

x=xjα(t),y=yjα(t)

• Define weight function wα ≡ δfα/Fα, where Fα = F0α + δfα.

• From Vlasov equation,

dw(x, y, v‖, t)α

dt
= [1 − w(x, y, v‖, t)α]

(

qα

qi
θv‖ − κN

)

∂φ(x, y, t)

∂y

• Monte Carlo sample:

dwjα(t)

dt
= [1−wjα(t)]

(

qα

qi
θv‖jα(t) − κN

)(

∂φ(x, y, t)

∂y

∣

∣

∣

∣

∣

x=xjα(t),y=yjα(t)

• Representation:

Fα = F0α +
N
∑

j=1

wjα(t)
LxLy

N
δ[x − xjα(t)]δ[y − yjα(t)]δ[v‖ − v‖jα(t)]



• Potential only represented at gridpoints - interpolate particle
positions from continuous space to gridpoints using finite-size par-
ticles.

δ[x − xj(t)] →
1

2∆x2
[∆x − |x − xj(t)| + |∆x − |x − xj(t)||]

where ∆x is the grid spacing. If x = xn = n∆x, and xj(t) =
(m + ε)∆x, for integer m, n and 0 ≤ ε < 1, we obtain

S(xn) =
1

2∆x
[1 − |n − m − ε| + |1 − |n − m − ε||]

S(xn) =
1

∆x
(1 − ε)δn,m +

1

∆x
εδn,m+1
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1

∆ x = 1, x
j
 = 2.67

which is just bilinear interpolation.



• In Fourier space, with ∆x = Lx/Nx (number of x gridpoints),

S[x − xj(t)] =
∞
∑

l=−∞

sin2
(

πl
Nx

)

e−2πilxj(t)/Lx

(

πl
Nx

)2 e2πilx/Lx(1 − δl,0)

• For x = n∆x,

S[xn − xj(t)] =
∞
∑

l=−∞

sin2
(

πl
Nx

)

e−2πilxj(t)/Lx

(

πl
Nx

)2 e2πiln/Nx(1 − δl,0)

• With aliasing,

S[xn−xj(t)] =
Nx/2−1
∑

l=−Nx/2,6=0

sin2

(

πl

Nx

)

e−2πilxj(t)/Lx







∞
∑

p=−∞

e−2πipxj(t)/∆x

(

πl
Nx

+ pπ
)2





 e2πiln/Nx

• Simplify notation:

∞
∑

p=−∞

e−2πipxjα(t)/∆x

(

πl
Nx

+ pπ
)2 ≡ Ajlα ;

∞
∑

q=−∞

e−2πiqyjα(t)/∆y

(

πm
Ny

+ qπ
)2 ≡ Bjmα

• Poisson equation:

φl,m(t) =

∑

α
qα

qi

∑N
j=1

wjα(t)

N
sin2

(

πl
Nx

)

e−2πilxjα(t)/Lx sin2
(

πm
Ny

)

e−2πimyjα(t)/LyAjlαBjmα
(

4π2l2

N2
x

+ 4π2m2(1−θ2)
N2

y

)

if (l, m) 6= (0, 0).

• Can add (l, m)-dependent filter Sl,m to restrict to specific values
of (l, m) (as in simulations).



• From fluctuation-dissipation theorem (assuming undriven sys-
tem),

〈δφδφ〉l,m = lim
T→∞

1

T

∫ T/2

−T/2
〈|δφl,m(t)|2〉dt

• Can determine an upper bound on discrete particle noise at a
given wavenumber by calculating this quantity for totally uncorre-
lated particles; in a discrete time representation [W. M. Nevins et

al., Phys. Plasmas 12, 122305 (2005)],

〈δφδφ〉l,m =
1

Nt

Nt−1
∑

t=0

∑

α

∑

α′

N
∑

j=1

N
∑

k=1

qαqα′

q2
i N

2
sin4

(

πl

Nx

)

sin4

(

πm

Ny

)

|Sl,m|2

〈

wjαtwkα′te
−2πil[xjαt−xkα′t]/Lxe−2πim[yjαt−ykα′t]/LyAjlαBjmαA∗

klα′B∗
kmα′

(

4π2l2

N2
x

+ 4π2m2(1−θ2)
N2

y

)2

〉

• Grid effects make this cumbersome; the different wavenumbers
of an indidividual particle couple together.

• Ignoring all grid effects (assuming φ can be represented through-
out the domain, not just at gridpoints) yields (for the uncorrelated
result)

〈δφδφ〉l,m ≤ 1

Nt

Nt−1
∑

t=0

(w̄et
2 + w̄it

2)

Nk⊥(l, m)4

• Compare with exact answer (for undriven system):

〈δφδφ〉l,m =
1

Nk2
⊥(l, m)

(

2

k2
⊥(l, m) + 2

)

≤ 1

Nt

Nt−1
∑

t=0

(w̄et
2 + w̄it

2)

Nk⊥(l, m)4



• Rearrange:

1 ≤ W 2 1 + k2
⊥(l, m)/2

k2
⊥(l, m)

where W 2 is the time average of the sum of the ion and electron
mean square weights. This quantity can be small, but k2

⊥(l, m)
is also small; in addition, the weight representation requires us to
normalize φ to a typical weight W̄ , since differing values of wjα(t =
0) yield different fluctuation levels for undriven systems [G. Hu and
J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. Roughly, then, we
get

1 ≤ W 2

W̄ 2

1 + k2
⊥(l, m)/2

k2
⊥(l, m)

which is obviously true for k2
⊥(l, m) � 1.

• When the inequality is suspect, the bulk of the fluctuations at
a given wavenumber are caused by noise.

• However, this method gives no information about the frequency
dependence of the noise; high-frequency discreteness-induced noise
may not substantially affect low-frequency turbulent phenomena.

Conclusions

• Linear growth, saturation, and transport associated with long-
wavelength drift modes (ignoring mode coupling effects) appear to
be independent of the high-frequency discrete particle noise con-
tained in the normal (ωH) modes.

• This high-frequency noise scales inversely as the number of
particles N in the simulation; higher N also improves signal-to-noise
ratio associated with transport quantities (flux).


