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Understanding discrete particle noise in an equilib-
rium plasma has been an important topic since the early
days of particle-in-cell simulation [1]. In this paper, par-
ticle noise in a nonlinearly saturated system is inves-
tigated. We explore the usefulness of the fluctuation-
dissipation theorem (FDT) in a regime where drift in-
stabilities are nonlinearly saturated. We obtain excellent
agreement between the simulation results and our theo-
retical predictions of the noise properties. It is found
that discrete particle noise is independent of the satura-
tion level and transport properties associated with long-
wavelength drift waves when mode coupling is ignored.

[1] C. K. Birdsall and A. B. Langdon, Plasma Physics via
Computer Simulation, McGraw-Hill, New York (1985).

Work supported by U.S. DoE and the SciDAC project.



Gyrokinetic Vlasov equation, (ki p; < 1):

oF, G oF,
ot M v

=0

Gyrokinetic Poisson equation:
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o F, = Fy(x,y,vy,t) is the distribution function of species o (two
species, ions and electrons).

e » = ¢(z,y,t) is the electrostatic potential, normalized to T'/¢;;
T is the temperature of both species.

e b= 0y + 2, 0 < 1; v is the velocity parallel to the magnetic
field Bb.

e Lengths normalized to p; = /- T Q , times normalized to ;' =
(¢:B/mq)~".

k3 (I, m) = kZ2I* + k2m?(1—6?) is the (square of the) wavevector
component perpendicular to the magnetic field; ky = 6k, is the
component parallel to the field.

e Periodic boundary conditions in a slab of size L,, L,; k, =
2n/Ly, ky =2m/L,.

® My, g, are the mass and charge of species aw. With normaliza-
tion, thermal velocity v2, = m;/m,.
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Drive drift waves in the system by letting
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Fao(z,v)) = Fao(v)) [Tp(—e)]
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e To lowest order Fuo(x,v)) = Fuao(v))  (independent of x)

e To lowest order VFyo(x,v|) = —knFao(v))Z  (independent of
x). Define wy = kyky.

Linear dielectric for this system is

mwi X; mwi
Dym(w) =1+ (1 N) - <1— N> =
L) +< T ) @am T o ) E(,m)
Xo=1+6aZ(€) ;| ba=——
a — a a) a_\/§k||mvm

where Z(&,) is the plasma dispersion function.

For undriven system (wx = 0):

lim Dl,m(w) =1

e No dielectric response if the frequency is too high
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lim D =14
tm Dumlw) = 1+ 20

e The gyrokinetic equivalent of Debye shielding; will use later



Undriven system (wj = 0) - normal modes
e Set Dy (w) = 0:
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e Assume both species are fluidlike:
Ea>1 = X\~ —1/282 —3/468 — ...

e Neglect ion contribution; vZ > v2 (ion distribution is a narrow
Maxwellian, electron distribution is a wide Maxwellian, so at high
velocities the electron contribution is more significant)

e Obtain wg-modes:
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e These modes can be shown to be weakly damped.

e Assume fluidlike ions, kinetic electrons:
E> 1,61 =X, ~—1/22 X, ~ 1

e Jon acoustic modes:
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e These modes can be shown to be strongly Landau damped
when T, =T,.




e Fluctuation-dissipation theorem tells us that (in thermal equi-
librium)

(6636)(4) = Foy ™ (1 - ﬁw)

e Integrate over all frequencies:
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e If the dielectric has no poles in the upper half-plane, take prin-
cipal value and perform integration:
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e For undriven system, we obtain

1 9
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e Doesn’t work for driven system; the drift wave grows, implying
a pole in the upper w-half-plane; also, original formula is only strictly
valid in thermal equilibrium.



Drift waves

e Fluidlike ions, kinetic electrons -
£e<<1; €z>>1 = XZNO, X6N1+iﬁ£e.

e Mode frequency and growth rate - set D;,,(w) = 0:

Do) = 0 = [ki(l,m) + ( - %) (1+ iﬁfe)}

k2 (I,m)
e Assume w = w, + i7,, 7, < w,; to lowest order

mwiy VW22 (1, m)
= 2 T = 2
1+kl(l>m) (1 +kj_(l7m>>\/§k||vt6

e Drift wave frequency much smaller than wy.

Wr



e For normal modes, we can approximate the function

9 1
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o Dy(w) =D +iD"
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(6000)1.m(w) = kai(l,m) [D/z + D//2]

e For small D” (normal modes that are weakly damped), the
Lorentzian function approaches a delta function;

N 2 , 2. 0w —wp)
<5¢5¢>l,m(w)~mﬂ5(p) Nk:2 lm Z:Z (%Z,

for the py normal modes with real frequency w,.
e Apply to ion acoustic and wy-modes:
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e Since k% (I,m) is small, the wy-terms are dominant; spectral
density function is composed of localized peaks at normal modes.
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e Numerical representation of (d¢d¢); ,(w); 6 = 0.01, L, = 64,
L, =32, (I,m) = (1,1), v = V1837.0. Qualitatively correct;
large-amplitude sharp peaks near wy modes; smaller-amplitude, less
well-defined peaks near ion acoustic modes.



e Compare w-integrated spectral density approximation with ex-
act answer:

1 1 1

<5¢5¢>l7m(approzimate) = N k’i(l, m) + (1 T k’i(l,m))

1

(0000)1m(ezact) = NE2 (1, m)[1 + K2(1,m)/2]

e Slight overestimate, but corrections are of order k2 (I, m), which
is small.

e Keeping more terms in the expansion of Z(&,) improves both
this estimate and the prediction for the location of peaks in the
spectral density.

e Spectral density ~ 1/N, where N is the number of particles in
the system.



e Include drift waves - what changes? Assume wj, is small and
find its effect on normal modes

e For wy-modes:

0=1- 28 TONYH ) TN
w? w3 2
e wy-modes slightly downshifted.
e For ion acoustic modes:
0= 1+ k2(l,m) _w%A B mwiw? B mwiy
k% (1, m) w? w3 w(l+ k3 (l,m))

= w = dwyag +

mwi [2+ k2 (I, m)
2 [1+kK5(l,m)

e w;s-modes slightly upshifted.

e Estimate for w-integrated (§¢d¢), ,,, remains the same, to lowest
order in wy.

e Can’t perform the w-integral analytically when growing modes
are present; numerical representation has problems capturing tran-
sition from damped to growing modes



e The (positive definite) spectral density function is still com-
posed of localized peaks at normal modes, but its numerical repre-
sentation is not correct for all w.
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e Numerical representation of (§¢d¢); ,(w); same parameters
with Ky = 0.02. Modes shift in the proper direction; transition
from damped to growing modes causes spurious numerical results.



Drift waves - nonlinear saturation

e As the drift wave nonlinearly saturates, its growth rate de-
creases to zero (marginally stable state); relevant frequency is now
no longer in upper w-half-plane.

e Keep only a single mode and its conjugates (I = +1,m = £1),
estimate properties of nonlinearly saturated state using quasilinear
approach (no mode coupling).

e Electron physics drives the drift wave, so neglect ion nonlineari-
ties and perturbed ion current - we obtain (from Vlasov and Poisson
equations)
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e Neglect parallel velocity nonlinearity, Fourier transform in time
and space:
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e From linear dispersion relation, (I = £1,m = £1):
Wik,—l = —Wi1 ; ¢>1k,—1(w) = ¢1,1(W) ; 5fe*1,—1(w) = 5fe1,1(w)

0 fern(w) = ¢171(w)Foe(((fvl%m

e Substitute these into [ = 2, m = 0 equation:

 2ikaky Foel 1 ()P (Wi — Kyvy)
wia = Koy |2
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e Nonlinear [ = 1, m = 1 equation; w; ; = w11, + 171 1:
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e Nonlinear dispersion relation (only retaining growth rate cor-
rections);

N b — W} AR2E2 |11 (1))
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e Nonlinear growth rate:
ARz 61 (1)
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e Drift wave grows up, saturates, and is (nonlinearly) marginally
stable: at saturation,

Dinte) = | 1= 2]

e Now, can find approximate contribution of drift wave to w-
integrated spectral density:
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e This yields the expression
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e Now, integrate this formula over high frequencies only; nonzero
but small wy in the dispersion relation only leads to slight shifts in
the normal mode frequencies:

[ lo0i0nnte), L1 1
w ~ 2 l W*Q
—00 27T large |w| Nk;J_( y m) 1 _|_ 4(45\%{
e For the undriven system,
© (0POD)1.m 1
/ < ¢ ¢>l, ((4)) dw ~ 5
—0 2w large |o] Nkfj_(l, m)

e The spectral wavenumber density, at large |w|, is nearly un-
altered by the presence of the drift wave. It continues to scale as
N~1. For drift waves, however, the fluctuations amplify, and the
mode grows until the nonlinear saturation effects (independent of
N) halt its growth. Thus, we expect this function to have a peak
at the drift frequency w;;, with an amplitude independent of N;
as well, we expect peaks at the frequencies fwy, with amplitudes
which decrease with increasing V.



Properties of discrete particle noise

e In Fourier space, spectral density function for wy = 0 system
indicates that discrete particle noise resides prominently at frequen-
cies w = &|wyl; its amplitude scales as N7t

e For small wy;, the high-frequency (discreteness-related) compo-
nents of the spectral density do not change appreciably. Drift waves
occur, but at a much lower frequency for a given wavenumber.

e The drift waves saturate at a level independent of N (assuming
large enough N for accurate results).
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e Simulations confirm these predictions. Here, we simulate drift
instabilities (kx = 0.2) on a 128 x 128 grid, with § = 0.01, (I, m) =
(£1,+1), L, = L, = 23, and At = 0.125.



e To ensure that the wy-noise is not affecting the drift wave, see

if drift-wave peak in the spectral density broadens as a function of
N.

e No broadening seen; suggests that noise is not substantially
affecting physics of drift wave.
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e Discreteness-induced noise can also influence measurements of
particle flux; can decrease average flux levels spuriously if too few
particles are used. Average flux converges quickly with N once
enough particles are used to obtain good statistics.

e Signal-to-noise ratio improves as particle number is increased,
even after average flux level has stabilized.
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e Same parameters as on previous page; the noise on the particle
flux measurement decreases as NN is increased.



Particle simulations

e Evolve particles according to characteristics of Vlasov equation,
value of F|, is conserved along these orbits.

0Fa allly aFa
+ub-VE, - V¢ xb-VE, — 20, . v

=0
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e Characteristics:

drja(t) 0¢(x,y,t)
a dy

x:xja(t)vy:yja (t)
dyjoe(t) 8¢(x, Y, t)
— Quyia(t T Y
g = e+ —5,
dv”ja(t) _ _qamie (8¢($, Y, t)
dt 4iMa Y lomru®y=yjal®
e Define weight function w,, = 0 f,/F,, where F,, = Fo, + 0 fa.

=20 (t),y=Yja (t)

e From Vlasov equation,

dw(z,y,v),t)a Qo
o =[1 —w(x,y,v,t)a] 0 Ov| — Ky
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Op(x,y,t)
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e Monte Carlo sample:

dw;q, - e
Pt = o) (e — ) (PG
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T=Tjx (t) YW=Yja (t)
e Representation:

L.L,
N

N
Fa = FOa + ija(t)

J=1

0z = ja()I0]y = yja(8)]0]v) — vyja(t)]



e Potential only represented at gridpoints - interpolate particle
positions from continuous space to gridpoints using finite-size par-
ticles.

Sl = 25(0] = g3 [z ~ & = 2,(0) + 17 — |z — 2,(1) ]

where Az is the grid spacing. If x = z, = nAz, and z;(t) =
(m + €)Az, for integer m,n and 0 < e < 1, we obtain
1
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% 1

Ax2= 1, xj =%.67

which is just bilinear interpolation.



e In Fourier space, with Az = L, /N, (number of z gridpoints),

- 2 (al\ —2milz;(t)/La
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e For x = nAx,
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e With aliasing,
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e Simplify notation:
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e Poisson equation:

do SN Wia(®) o+ 2 (7l —2mil L, 2 —2mimy;a (t)/L
ZQZ jzlesm( )e ’”“Ua()/”sm( )e mimysa(t)/ v Ajia Bjma
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¢l,m (t) =

if (I,m) # (0,0).

e Can add (I, m)-dependent filter S; ,,, to restrict to specific values
of (I,m) (as in simulations).



e From fluctuation-dissipation theorem (assuming undriven sys-
tem),

1 T2
(5008)um = Jim 72 [ (16610(0) )it
e Can determine an upper bound on discrete particle noise at a
given wavenumber by calculating this quantity for totally uncorre-
lated particles; in a discrete time representation [W. M. Nevins et
al., Phys. Plasmas 12, 122305 (2005)],
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2
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e Grid effects make this cumbersome; the different wavenumbers
of an indidividual particle couple together.

e Ignoring all grid effects (assuming ¢ can be represented through-
out the domain, not just at gridpoints) yields (for the uncorrelated
result)

1 N¢—1

(U}_et +w2t2)
lm = Nt Z

(5666) > N

e Compare with exact answer (for undriven system):

1 9 1 & (W + )
pu— < AT N (] )4
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e Rearrange:

1+ k3 (l,m)/2

1< W2
W m

where W? is the time average of the sum of the ion and electron
mean square weights. This quantity can be small, but &2 (I, m)
is also small; in addition, the weight representation requires us to
normalize ¢ to a typical weight W, since differing values of w;,(t =
0) yield different fluctuation levels for undriven systems [G. Hu and
J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. Roughly, then, we
get

| < W21+ ki (I,m)/2
~ W2 KA (I,m)

which is obviously true for k% (I, m) < 1.

e When the inequality is suspect, the bulk of the fluctuations at
a given wavenumber are caused by noise.

e However, this method gives no information about the frequency
dependence of the noise; high-frequency discreteness-induced noise
may not substantially affect low-frequency turbulent phenomena.

Conclusions

e Linear growth, saturation, and transport associated with long-
wavelength drift modes (ignoring mode coupling effects) appear to
be independent of the high-frequency discrete particle noise con-
tained in the normal (wy) modes.

e This high-frequency noise scales inversely as the number of
particles IV in the simulation; higher N also improves signal-to-noise
ratio associated with transport quantities (flux).



