Recent Progress in Gyrokinetic Particle Simulations of Turbulent Plasmas

G. Rewoldt, S. Ethier, T.S. Hahm, W.W. Lee, J.L.V. Lewandowski, W.X. Wang *Princeton Plasma Physics Laboratory, Princeton University* Z. Lin, Y. Nishimura *University of California, Irvine*

Global Gyrokinetic Toroidal Code (GTC)

- Gyrokinetic particle simulation
 - Efficient sampling of 5D phase space
- GTC global field-aligned mesh:
 - Respects physical periodicity
 - Efficient for toroidal eigenmode
 - # of computation ~ $(a/\rho)^2$
 - Reduces computation by *n~10³*
- Massively parallel computing
 - Reactor scale plasmas
 - Keeps all toroidal modes $n \sim 10^3$
- Resources: US DOE SciDAC

Linear Frequency Comparison: GTC, GT3D, FULL R / L_{Ti} (η_i) Scan with Trapped Electrons

• FULL: local only, GTC fixed density and temperature values but varying gradients; GT3D varying density and temperature values and gradients (different profile shapes)

•Vary R/L_{Ti} (and η_i) at fixed R/L_{Te} = 6.92, R/L_n = 2.22, and k₀ ρ_i = 0.335 (on reference surface) with trapped electrons

Z. Lin

Electron Transport Insensitive to ETG Streamer Length

- At *t=20/γ₀* after saturation
- Streamer length scales with device size
- Eddy turnover time $\tau \sim 16/\gamma_0$
 - $\gamma_{nl} << \gamma_0$
- Electron does not rotate with streamers
- Transport driven by wave-particle interaction
- Mixing length estimate inaccurate

Z. Lin

Nonlinear Toroidal Couplings Regulate ETG Turbulence

- 1st step: generation of low-*n* quasi-mode $(n_1, m_1) + (n_2, m_2) \Rightarrow (\Delta n, \Delta m) = (n_2 - n_1, m_2 - m_1)$
 - "Meso-scale: optimal mode number $\Delta n \sim n_1^{1/2}$
 - No ballooning structure: $\lambda_{\parallel} \sim qRn_1^{1/2}$
- 2nd step: energy transfer to nonlinear mode $(n_1, m_1) + (\Delta n, \Delta m) \Rightarrow (n_1 - \Delta n, m_1 - \Delta m)$
 - Streamers nonlinearly generated
- Spectral transfer facilitated by quasimodes
 - Nonlocal in *n*-space, "Compton Scattering"
 - Streamer coupling: toroidal geometryspecific
- Need to keep all toroidal modes
 - Sufficient channels for spectral transfer

Particle Diffusion Due To Toroidal ITG Modes With/Without Parallel Velocity-Space Nonlinearity

- (q/m) E_{II} ($\partial \delta f / \partial v_{II}$) term in GTC
- Additional channel to reach steady state
- Different (test particle) diffusion pattern (and scaling)?

Gyrokinetic Simulation of Microturbulence for Shaped Plasmas W.X. Wang

• General Geometry GTC developed with generalized and extended features: realistic plasma profiles and MHD equilibrium(ESC, JSOLVER...); systematic treatment of plasma rotation and equilibrium **ExB** flow (calculated from GTC-Neo); nonuniform mesh in correlation with local gyroradius; accurate gyrokinetic transformation; ES with adiabatic electrons (tested); trapped electrons via higher order correction (to be tested).

To do: update field solver; incorporate split-weight scheme for electron dynamics; fully develop and deliver EM general geometry capability for turbulence simulations; Physics: TEM, Alfvenic ITG (KBM), micro-tearing, ITB dynamics ...

Y. Nishimura

Hybrid Model Employed for Nonlinear Simulations with Kinetic Electrons

 mass-ratio expansion - solve quasi-neutrality equation and induction equation

• Cyclone parameters, $\eta_i = \eta_e = 3.12$: Before (left) and after (right) saturation. Linear growth rate approximately twice as large as case with adiabatic electrons.

Y. Nishimura

Testing Shear-Alfven Wave Propagation - Fluid-Kinetic Hybrid Electron Model

(Left) Evolution of A_{\parallel} accompanied by a linear ITG instability, with $A_{\parallel} = 0$ as an initial condition. (Right) Perturbing a magnetic field line at t=0 in a uniform plasma with an odd parity mode for A_{\parallel} at t=0.

J.L.V. Lewandowski

Split-weight Scheme for Toroidal, Kinetic PIC Simulations with Kinetic Electrons

- Remove the adiabatic electron response analytically, and solve for non-adiabatic response numerically currently ES but later EM (solve GK Poisson equation & Ampere's law)
- I-D simulations showed: (1) more accurate linear growth rate, (2) cleaner power spectrum, and(3) better conservation properties even for few electrons, $N_e << N_i$.

• Splitting scheme for toroidal plasmas: $F_e = F_M \exp(e\Phi/T_e) + h$, and solve for non-adiabatic weight w = h/F_e.

• Split-weight scheme for non-adiabatic electron response only (allows for turbulent & collisional friction between trapped & untrapped electrons).

• Current density and other scalar quantities deposited on structured (but not logically rectangular) grid every timestep, and inversion of field equation carried out using finite-element method, with triangular elements. $\Phi(\mathbf{r}, \theta)$

• Global finite-element Poisson solver used to invert A $\partial \Phi/\partial t = S$ (32 or 64 different Stiffness matrices A, on different poloidal planes)

• Numerical method is stable for large time step $\Delta t = (5 - 10) / \omega_{ci}$

Neoclassical Transport Studies – GTC-Neo:

• global PIC code; ions + electrons; generalized tokamak geometry; self-consistent equilibrium E_r; finite orbit effects (nonlocal transport); systematic treatment of plasma rotation.

{ T(r), n(r), $\omega_t(r)$ } ==> q, Γ , j_b, E_r, ...

• **Finite Orbit Transport** (with Tang, Hinton *et al.*): nonlocal and nondiffusive property of ion thermal transport near magnetic axis; bootstrap current modified with large T_i gradient (not density gradient); additional bootstrap current, either positive or negative, driven by toroidal rotation gradient; additional poloidal flow driven by the toroidal rotation gradient.

Applications to NSTX and DIIID (by Rewoldt and Wang):

Doing and To Do: impurity physics by incorporating impurity and beam species into GTC-Neo; systematic inclusion of large gyro-orbit classical transport for low aspect ratio plasmas such as NSTX

Conclusions

- Progress on many fronts for GTC code!
- GTC working now in ES limit, with circular concentric magnetic surfaces, including trapped electrons, producing physics results:
 - Linear and nonlinear benchmarking
 - ETG modes
 - Parallel nonlinearity
 - Turbulence spreading [T.S. Hahm, this meeting]
- Non-circular-cross-section generalization
 beginning to produce results
- Two complementary approaches for EM generalization being investigated
- GTC-Neo code for neoclassical fluxes & E_r
- Still need to put everything together!